TCEQ Interoffice Memorandum

To:	Lorinda Gardner, Regional Director
From:	Tiffany Bredfeldt, Ph.D. TB Toxicology Division, Office of the Executive Director
Date:	August 22, 2016
Subject:	Health Effects Review of 2015 Ambient Air Network Monitoring Data in Region 6, El Paso

Conclusions

- Reported short-term concentrations of volatile organic compounds (VOCs) were below their respective air monitoring comparison values (AMCV) values and would not be expected to cause adverse acute health effects, vegetation effects, or odors.
- Twenty-four hour concentrations of benzene, 1,3-butadiene, ethylene dicholoride, formaldehyde, acrolein, and chromium were below their 24-hour AMCVs and would not be expected to cause adverse health effects.
- Reported concentrations of lead, reported as total suspended particulate (TSP) or particulate matter with aerodynamic diameter of 2.5 microns or less ($PM_{2.5}$), were below the comparison value of 0.15 μ g/m³ at monitors that met data completeness requirements.
- Reported annual concentrations of VOCs, polycyclic aromatic hydrocarbons (PAHs), carbonyls, and metals reported as PM_{2.5} or TSP were below their respective AMCVs and would not be expected to cause long-term adverse human health or vegetation effects.
- Reported concentrations of hydrogen sulfide (H₂S) collected at the El Paso Lower Valley monitor exceeded the state 30-min H₂S standard 450 times (based upon rolling averages of 5 minute samples); it is likely that conditions would have been odorous at times. This area of El Paso is currently on the Air Pollutant Watch List (APWL0601) for H₂S.

Background

This memorandum conveys the Toxicology Division's (TD) evaluation of ambient air sampling conducted at seven monitoring sites in Region 6, El Paso, during 2015. TCEQ Region 6 monitoring site information is presented in Table 1 along with hyperlinks to detailed information regarding the monitoring sites and their maps. Lists 1-5, which can be found in Attachment A, display the target analytes for the monitoring sites. The TD reviewed air monitoring summary results from 1-hour autoGC VOC samples, VOC canister samples collected on a 24-hour every sixth-day schedule, 24-hour metals samples (PM_{2.5} or TSP), 24-hour carbonyl samples, 24-hour PAH samples, and 30 minute H₂S rolling average samples.

The TCEQ Monitoring Division reported the data for all chemicals evaluated in this memorandum. Data discussed in this evaluation for all monitoring sites includes the following: 84 VOCs from canister samples, 46 VOCs from autoGC, 17 carbonyls, 15 PM_{2.5} metals and 2

Lorinda Gardner, et al. Page 2 August 22, 2016

TSP metals, 16 PAHs, and H₂S. Table 2 summarizes the site data completeness, an objective that is met when there is 75 percent data return. In order to be able to evaluate 24-hour monitoring data more fully, TCEQ has developed 24-hour AMCVs for 1,3-butadiene, benzene, ethylene dichloride, acrolein, chromium, and formaldehyde. As such, 24-hour samples were compared to the available TCEQ 24-hour AMCVs.

As PM_{10} and lead are a criteria pollutants, applicable PM_{10} and lead levels (i.e., 24-hour values and rolling three-month averages, respectively) were compared to the appropriate comparison values (i.e., 150 ug/m³ and 0.15 µg/m³, respectively); however, annual average lead concentrations were also evaluated since they are more representative of long-term lead exposure from a health perspective.

Since 24-hour samples collected using the every sixth day schedule are designed to provide a representative long-term, ambient concentration for chemicals of concern, annual averages from all 24-hour samples were evaluated using appropriate long-term AMCVs for the potential to adversely impact long-term human health and vegetation effects. Thus, annual average concentrations of carbonyls, metals, PAHs, and VOCs (collected via autoGC and canister samples), were compared to their respective long-term AMCVs. Additional information regarding the derivation and application of AMCVs is available <u>online</u>.

The El Paso Lower Valley monitor measures ambient concentrations of H_2S and elevated levels of this chemical have been reported annually at this monitoring site since 2004. Further information regarding historical data collected at this monitoring site and subsequent evaluations of collected data are available from the Air Pollutant Watch List <u>website</u>.

Table 1. Monitoring Sites Located in TCEQ Region o			
City and Site Location	County	Monitor ID	Monitored Compounds
·			-
650 R.E. Thomason Loop	El Paso	48-141-0055	Carbonyls, Lead and
(Ascarate Park SE)			Arsenic (TSP)
800 S. San Marcial Street	El Paso	48-141-0044	VOCs ^b , Metals (PM _{2.5})
(El Paso Chamizal)			
250 Rim Road	El Paso	48-141-0037	Lead (TSP)
(El Paso UTEP)			
8470 Plant Rd	El Paso	48-141-0054	H ₂ S
(El Paso Lower Valley)			
6767 Ojo De Agua	El Paso	48-141-1021	Lead (TSP)
(Ojo De Agua)			
320 Old Hueco Tanks Road	El Paso	48-141-0057	VOCs ^a , PAHs
(Socorro Hueco)			
Clark & Cleveland Streets	El Paso	48-141-0047	VOCs ^a
(Womble)			
		1	

 Table 1. Monitoring Sites Located in TCEQ Region 6

^a24-hour canister only; ^bone-hour autoGC

Lorinda Gardner, et al. Page 3 August 22, 2016

Site Name	Parameter	Complete?
Ascarate Park SE	Carbonyl	Yes
Ascarate Park SE	Lead and Arsenic (TSP)	Yes
El Paso Chamizal	VOCs ^b	No*
El Paso Chamizal	Metals (PM _{2.5})	Yes
El Paso Lower Valley	H ₂ S	Yes
El Paso UTEP	Lead (TSP)	No
Ojo De Agua	Lead (TSP)	No
Socorro Hueco	VOCs ^a	Yes
Womble	VOCs ^a	Yes

Table 2. Data Completeness TCEQ Region 6

• ^a 24-hour canister only; ^bone-hour autoGC

• Specific compounds did not meet data completeness goals: 1,2,3-trimethylbenzene, 1, 3, 4-trimethylbenzene, 1,3,5-trimethylbenzene, n-decane, isoprene, and acetylene

Evaluation

VOCs

Hourly average concentrations of the 46 VOCs collected at the Chamizal autoGC monitoring site were below their respective short-term health-, odor-, and vegetation-based AMCVs. Thus, exposure to the reported hourly average concentrations would not be expected to cause adverse human health or welfare effects.

All 24- hour VOC concentrations of benzene and 1,3-butadiene and ethylene dicholoride were below their 24-hour AMCVs and would not be expected to cause adverse health effects.

The 2015 annual average concentrations for all 84 VOCs collected as 24-hour canister samples at the Socorro Hueco and Womble monitoring sites were well below their respective long-term AMCVs. Annual average concentrations for the 46 VOCs collected at the Chamizal autoGC monitoring site were also below their long-term AMCVs. Thus, adverse human health or vegetation effects would not be expected to occur as a result of long-term exposure to the reported levels of these chemicals at these monitoring sites.

Lorinda Gardner, et al. Page 4 August 22, 2016

Carbonyls

Reported annual average concentrations of the 17 carbonyls measured at the Ascarate Park SE monitoring site were below their respective long-term AMCVs and would not be expected to cause adverse human health effects. Likewise, 24-h concentrations of acrolein and formaldehyde were below their respective 24-h AMCVs, indicating that the measured 24-h concentrations would not be of concern to human health.

Metals

Reported annual average concentrations for all 15 metals ($PM_{2.5}$) measured at the Chamizal monitoring site were below their respective long-term AMCVs and would not be considered of concern to human health. All chromium ($PM_{2.5}$) levels were below their 24-h AMCV and would not be of concern to human health at this site. In the case of lead (TSP), reported concentrations collected at the Ascarate Park SE site were below the applicable comparison value. Thus, none of the reported annual average concentrations for these 15 metals ($PM_{2.5}$ or TSP) would be of concern to human health.

The lead data (TSP or $PM_{2.5}$) collected at Ojo De Agua and El Paso UTEP monitoring sites were subjected to re-analysis for quality control reasons. After re-analysis data will be evaluated and this memo will be updated via an additional appendix to address the findings of this analysis.

PAHs

The reported annual average concentrations for the 16 PAHs reported at the Socorro Hueco monitoring site in 2015 were well below their long-term AMCVs and would not be expected to cause adverse human health effects.

H₂S

Of the H₂S samples collected at the El Paso Lower Valley site, 450 30-minute rolling averages exceeded the state regulatory standard for H₂S in 2015 (80.1-512.5 ppb). The measured levels of H₂S were likely odorous at times given that the odor threshold for H₂S is <u>0.5 to 300 ppb</u>. It appears that the majority of these exceedances occurred during the months of December and November, indicating that possible meteorological conditions or operations at the facility that is the source of these emissions were such that the number of exceedances of the state standard was higher in that particular month than any other. Overall, the exceedances of the state regulatory standard do not represent an immediate threat to human health or wellness.

El Paso Lower Valley APWL0601 Area for Hydrogen Disulfide (H₂S)

The data at the El Paso Lower Valley H_2S monitor met data completeness objectives, and in 2015, 450 exceedances of the 30-min H_2S state standard (80 ppb) were reported. Concentrations above the state standard as described above would be likely odorous to the public. While these exceedances do not represent an immediate threat to human health, they may cause impacts on the public by creating odorous conditions. It is our understanding that the primary source of H_2S detections is a wastewater treatment plant located in the Ciudad Juarez, making remedial or

Lorinda Gardner, et al. Page 5 August 22, 2016

enforcement actions complex for many reasons. The TD encourages H_2S reductions in the area, if possible.

If you have any questions or comments regarding this evaluation, please feel free to contact me at (512) 239-1799 or <u>tiffany.bredfeldt@tceq.texas.gov</u>.

Lorinda Gardner, et al. Page 6 August 22, 2016

Attachment A

List 1. Target VOC Analytes in Canister Samples

1,1,2,2-Tetrachloroethane Bromo	omethane	Methyl Chloroform (1,1,1-
1,1,2-Trichloroethane Carbo	n Tetrachloride	Trichloroethane)
1,1-Dichloroethane Chloro	obenzene	Methylcyclohexane
1,1-Dichloroethylene Chloro	oform	Methylcyclopentane
1,2,3-Trimethylbenzene Chlore	omethane (Methyl	N-Butane
1,2,4-Trimethylbenzene Ch	lloride)	N-Decane
1,2-Dichloropropane Cis 1,2	3-Dichloropropene	N-Heptane
1,3,5-Trimethylbenzene Cis-2-	Butene	N-Hexane
1,3-Butadiene Cis-2-	Hexene	N-Nonane
1-Butene Cis-2-	Pentene	N-Octane
1-Hexene+2-Methyl-1-Pentene Cyclo	hexane	N-Pentane
1-Pentene Cyclo	pentane	N-Propylbenzene
2,2,4-Trimethylpentane Cyclo	pentene	N-Undecane
2,2-Dimethylbutane (Neohexane) Dichle	orodifluoromethane	O-Ethyltoluene
2,3,4-Trimethylpentane Dichle	promethane (Methylene	O-Xylene
2,3-Dimethylbutane Ch	lloride)	P-Diethylbenzene
2,3-Dimethylpentane Ethane	e	P-Ethyltoluene
2,4-Dimethylpentane Ethylb	oenzene	Propane
2-Chloropentane Ethyle	ene	Propylene
2-Methyl-2-Butene Ethyle	ene Dibromide (1,2-	Styrene
2-Methylheptane Di	bromoethane)	Tetrachloroethylene
2-Methylhexane Ethyle	ene Dichloride (1,2-	Toluene
2-Methylpentane (Isohexane) Di	chloroethane)	Trans-1-3-Dichloropropylene
3-Methyl-1-Butene Isobut	ane	Trans-2-Butene
3-Methylheptane Isoper	tane (2-Methylbutane)	Trans-2-Hexene
3-Methylhexane Isopre	ne	Trans-2-Pentene
3-Methylpentane Isopro	pylbenzene (Cumene)	Trichloroethylene
4-Methyl-1-Pentene M-Die	ethylbenzene	Trichlorofluoromethane
Acetylene M-Eth	yltoluene	Vinyl Chloride
Benzene M/P X	Tylene	

List 2. Target Carbonyl Analytes

2,5-Dimethylbenzaldehyde	Crotonaldehyde - 2-Butenal	Methacrolein
Acetaldehyde	Formaldehyde	o-Tolualdehyde
Acetone	Heptaldehyde	Propanal - Propionaldehyde
Acrolein	Hexanaldehyde	m & p-Tolualdehyde
Benzaldehyde	Isovaleraldehyde	Valeraldehyde
Butyraldehyde	Methyl Ethyl Ketone (MEK)	

List 3. Target Metal Analytes

Aluminum (PM _{2.5})	Chromium (PM _{2.5})	Molybdenum (PM _{2.5})
Antimony (PM 2.5)	Cobalt (PM _{2.5})	Nickel (PM _{2.5})
Arsenic (PM _{2.5})	Copper $(PM_{2.5})$	Selenium ($PM_{2.5}$)
Barium (PM _{2.5})	Lead (PM _{2.5} or TSP)	Tin (PM _{2.5})
Cadmium (PM _{2.5})	Manganese(PM _{2.5})	Zinc $(PM_{2.5})$
		,

List 4. Target PAH Analytes

Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene

Benzo (ghi) perylene

Chrysene

Fluorene

Fluoranthene

Benzo (k) fluoranthene

Dibenzo (a,h) anthracene

Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene

List 5. Target VOC Analytes in AutoGC

1-Butene	Benzene	n-Heptane
1-Pentene	c-2-Butene	n-Hexane
1,2,3-Trimethylbenzene	c-2-Pentene	n-Nonane
1,2,4-Trimethylbenzene	Cyclohexane	n-Octane
1,3-Butadiene	Cyclopentane	n-Pentane
1,3,5-Trimethylbenzene	Ethane	n-Propylbenzene
2-Methylheptane	Ethyl Benzene	o-Xylene
2-Methylhexane	Ethylene	p-Xylene + m-Xylene
2,2-Dimethylbutane	Isobutane	Propane
2,2,4-Trimethylpentane	Isopentane	Propylene
2,3-Dimethylpentane	Isoprene	Styrene
2,3,4-Trimethylpentane	Isopropyl Benzene - Cumene	t-2-Butene
2,4-Dimethylpentane	Methylcyclohexane	t-2-Pentene
3-Methylheptane	Methylcyclopentane	Toluene
3-Methylhexane	n-Butane	
Acetylene	n-Decane	