Technical Support Document: Bacteria Total Maximum Daily Loads For Rolling Fork Creek, a Tributary of Whiteoak Bayou, Houston, Texas (1017F_01)

Contract No. 582-10-90494 Work Order No. 582-10-90494-26

Prepared for:

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

TCEQ Contact:
Jim Neece, TMDL Team
P.O. Box 13087, MC-203
Austin, Texas 78711-3087
Jim.Neece@tceq.texas.gov

Prepared by:

University of Houston

TABLE OF CONTENTS

TABLE	E OF C	ONTENTS	ii
LIST C	F FIG	URES	iv
LIST C	F TAB	LES	iv
ACRO	NYMS	AND ABBREVIATIONS	vi
CHAP	ΓER 1 I	NTRODUCTION	1-1
1.1	Water	shed Description	1-1
1.2	Summ	nary of Existing Data	1-4
	1.2.1	Soil	1-4
	1.2.2	Land Cover	1-7
	1.2.3	Precipitation	1-9
	1.2.4	Ambient Water Quality	1-12
	1.2.5	Stream Flow Data	1-14
1.3	White	oak Bayou Seasonality	1-14
CHAP	ΓER 2 I	PROBLEM IDENTIFICATION AND WATER QUALITY TAR	GET2-1
2.1	Pollut	ant of Concern: Characteristics of Bacterial Indicators	2-1
2.2	TCEQ	Water Quality Standards for Contact Recreation	2-1
2.3	Proble	em Identification	2-5
2.4	Water	Quality Targets for Contact Recreation	2-8
CHAP	TER 3 I	POLLUTANT SOURCE ASSESSMENT	3-1
3.1	Point	Sources: NPDES/TPDES-Permitted Sources	3-1
	3.1.1	Permitted Sources: NPDES/TPDES Wastewater Facility Point Sour Discharges	
	3.1.2	Permitted Sources: Sanitary Sewer Overflows	3-6
	3.1.3	Permitted Sources: TPDES Regulated Stormwater	3-9
	3.1.4	Concentrated Animal Feeding Operations	3-10
3.2	C	ulated Sources: Stormwater, On-site Sewage Facilities, and Direct	3-11
	3.2.1	Wildlife and Unmanaged Animal Contributions	3-
	3.2.2	Unregulated Agricultural Activities and Domesticated Animals	3-11
	3.2.3	Failing On-site Sewage Facilities	3-13
	3.2.4	Domestic Pets	3-16

	3.2.5 Bacteria Re-growth and Die-off	3-17
CHAPT	TER 4 TECHNICAL APPROACH AND MET	HODS4-1
4.1	Using Load Duration Curves to Develop TMDL	_s4-1
4.2	Development of Flow Duration Curves	4-2
4.3	Estimating Current Point and Nonpoint Loading from Load Duration Curves	g and Identifying Critical Conditions4-4
4.4	Development of Bacteria TMDLs for Freshwate Curves	
CHAPT	TER 5 TMDL CALCULATIONS	5-1
5.1	Results of TMDL Calculations	5-1
5.2	Estimated Loading and Critical Conditions	5-1
5.3	Wasteload Allocation	5-2
5.4	Load Allocation	5-3
5.5	Seasonal Variability	5-3
5.6	Allowance for Future Growth	5-4
5.7	Margin of Safety	5-4
5.8	TMDL Calculations	5-4
CHAPT	TER 6 PUBLIC PARTICIPATION	6-1
CHAPT	TER 7 REFERENCES	7-1
APPEN	NDICES	
Append	lix A Ambient Water Quality Bacteria Data – 20	003 to 2010
Append	lix B USGS Flow Data and Whiteoak Bayou Ins	stantaneous Flow Data
Append	lix C Discharge Monitoring Reports – 2003-201	3
Append	lix D Methodology for Estimating Flow at WQM	M Stations
Append	lix E Method for Estimating Future WWTF Per	mitted Flows

LIST OF FIGURES

Figure 1-1: Location Map for Whitoak Bayou Watershed	1-3
Figure 1-2: Whiteoak Bayou Region Soil Types	1-6
Figure 1-3: Land Cover Map	1-8
Figure 1-4: HCOEM Precipitation Map	1-11
Figure 1-5: WQM Station Location	1-13
Figure 2-1: TCEQ WQM Stations in the Whiteoak Bayou Watershed	2-7
Figure 3-1: TPDES-Permitted Facilities in the Whiteoak Bayou Watershed	3-3
Figure 3-2: Sanitary Sewer Overflow Locations	3-8
Figure 3-3: Example illicit discharge, Whiteoak Bayou Above Tidal	3-10
Figure 3-4: Unsewered Areas and Subdivisions with OSSF	3-15
Figure 4-1: Flow Duration Curve for Whiteoak Bayou Above Tidal [Rolling Fork Creek (1017F_01)	
Figure 4-2: Schematic Diagram – Interpreting Sources and Loads	4-6
Figure 5-1: Load Duration Curve for Whiteoak Bayou Above Tidal (1017F_01)	5-2
LIST OF TABLES	
Table 1-1: County Population and Density	1-2
Table 1-2: Whiteoak Bayou Watershed Population Increases by City, 2010 to 2030	
Table 1-3: Population Estimate by Assessment Unit	1-4
Table 1-4: Characteristics of Soil Types and Soli Type Distribution in the Whiteoak Bay Subwatershed	
Table 1-5: Aggregated Land Cover Summaries by Assessment Unit	1-7
Table 1-6: Annual Totals at HCOEM Rainfall Gages in Whiteoak Bayou Watershed	1-10
Table 1-7: Average Annual HCOEM Precipitation in Whiteoak Bayou Subwatersheds, 2 2012	
Table 1-8: Historical Water Quality Data for TCEQ Station from 2007 to 2012	1-12
Table 1-9: Average Monthly Temperatures for Houston Hobby AP, TX (1981-2010)	1-14
Table 1-10: Seasonal Differences for <i>E coli</i> Concentrations	1-15
Table 2-1: Synopsis of Texas 2012 303(d) List	2-2
Table 2-2: Synopsis of Texas Integrated Report for the Whiteoak Bayou Watershed	2-2
Table 2-3: Water Quality Monitoring Stations Used for 303(d) Listing Decision	2-6
Table 3-1: TPDES-Permitted Facilities in the Study Area	3-4

iv

Table 3-2: DMR Data for Permitted Wastewater Discharges (January 2002-December 20	
	3-4
Table 3-3: E coli Data for Permitted Wastewater Discharges (April 2012-Decmeber 2012	
Table 3-4: Sanitary Sewer Overflow (SSO) Summary	3-7
Table 3-5: Percentage of Permitted Stormwater in each Watershed	3-10
Table 3-6: Livestock and Manure Estimates by Watershed	3-12
Table 3-7: Fecal Coliform Production Estimates for Selected Livestock (x10 ⁹ /day)	3-13
Table 3-8: Estimated Number of OSSFs per Watershed and Fecal Coliform Load	3-16
Table 3-9: Estimated Numbers of Pets	3-16
Table 3-10: Fecal Coliform Daily Production by Pets (x 10 ⁹)	3-17
Table 4-1: Hydrologic Classification Scheme	4-3
Table 5-1: Wasteload Allocations for TPDES-Permitted Facilities	5-3
Table 5-2: E coli TMDL Calculations for Whiteoak Bayou Above Tidal (1017F_01)	5-5
Table 5-3: E coli TMDL Summary Calculation for Non-tidal Segment	5-5

V

ACRONYMS AND ABBREVIATIONS

ASAE American Society of Agricultural Engineers

C-CAP Coastal Change Analysis Program

CAFO concentrated animal feeding operation

CFR Code of Federal Regulations

cfs cubic feet per second

counts colony forming unit

CN curve number

dL deciliter

DMR discharge monitoring report

E coli Escherichia coli

FDC flow duration curve

GCHD Galveston County Health District

GIS geographic information system

HCFCD Harris County Flood Control District

HCOEM Harris County Office of Emergency Management

H-GAC Houston-Galveston Area Council

LA load allocation

LDC load duration curve

mL milliliter

MOS margin of safety

MS4 municipal separate storm sewer system

NOAA National Oceanic and Atmospheric Administration

NPDES National Pollution Discharge Elimination System

NRCS National Resources Conservation Service

vi June 2014

OSSF on-site sewage facility

RMSE root mean square error

SSO sanitary sewer overflow

SWQS surface water quality standards

SWQMIS Surface Water Quality Monitoring Information System

TAC Texas Administrative Code

TCEQ Texas Commission on Environmental Quality

TCOON Texas Coastal Ocean Observation Network

TMDL Total Maximum Daily Loads

TPDES Texas Pollution Discharge Elimination System

TSARP Tropical Storm Allison Recovery Project

TWDB Texas Water Development Board

USDA U.S. Department of Agriculture

USEPA U.S. Environmental Protection Agency

USGS U.S. Geological Survey

WLA waste load allocation

WQM water quality monitoring

WQS water quality standard

WWTF wastewater treatment facility

vii June 2014

CHAPTER 1 INTRODUCTION

1.1 Watershed Description

Whiteoak Bayou, the impaired stream addressed in this study, is located in and around the greater Houston area. Buffalo Bayou meanders from the outlying, less-developed portions of Waller, Harris and Fort Bend Counties joining Whiteoak Bayou in the highly urbanized central part of the Houston business district. Whiteoak Bayou spans across Harris County. The watersheds also encompass the City of Houston along with Jersey Village. A map of the overall watershed area is illustrated in Figure 1-1.

Whiteoak Bayou lies within the San Jacinto River Basin and eventually discharges to Galveston Bay. The Whiteoak Bayou watershed has an area of 105 square miles and the stream segment is 23 miles long (H-GAC, 2001). Our Study Area which is an impaired segment 2.24 miles long has a drainage area of 4.37 square miles. A unique feature of the Buffalo Bayou and Whiteaok Bayou watershed is that two flood control reservoirs are located along its main stem. The reservoirs are operated by the U. S. Army Corps of Engineers to minimize flooding downstream on Buffalo Bayou. The reservoirs detain flood waters until the potential for flooding has dissipated. At that point, water is released downstream at a maximum flow of 2,000 cfs (based upon United States Geological Survey [USGS] gage at Piney Point).

In 2008, TMDLs were developed for impairments to contact recreational use for indicator bacteria in the Buffalo and Whiteoak Bayou watersheds, which included segments 1013, 1014, and 1017, and in 2012, a TMDL was developed for an additional segment (1017C). This Technical Support Document (TSD) focuses on the following waterbody that TCEQ placed in Category 5a [303(d) list] of the Draft 2012 Integrated Report for nonsupport of contact recreation use:

Rolling Fork Creek (1017F): from the Whiteoak Bayou Above Tidal confluence to a point 3.9 km (2.4 mi) upstream.

Figure 1-1 is a location map showing these Texas waterbodies and their contributing watersheds. The delineation of each subwatershed is derived from 2005 geographic information system (GIS) data files created for the Tropical Storm Allison Recovery Project (TSARP), provided by Harris County Flood Control District (HCFCD). These waterbodies and their surrounding watersheds are hereinafter referred to as the Study Area.

The climate in Whiteoak Bayou is distinguished by hot, humid summers and temperate winters. Prevailing winds are from the south and southwest most of the year, which brings moisture from the Gulf of Mexico that drives much of the precipitation in the area. The National Weather Service reports typical summer temperatures in the area that range from a low of 70°F to highs between 90°F and 94°F. Winter temperatures range from a low of around 40°F to a mild high around 63°F.

The Study Area experiences frequent rainfall events with annual precipitation totals around 50 inches. Monthly rainfall totals are fairly consistent throughout the year, with slightly more rainfall falling in May and June (approximately 5 inches), compared to the remainder of the year (3 to 4 inches). High intensity rainfall often causes localized street flooding and occasional out of bank conditions. As the study watersheds are located near the Gulf Coast, they are

potentially subject to hurricanes between June 1 and November 30 every year, although the chance of tropical weather declines dramatically in October.

Table 1-1, derived from the 2000 and 2010 U.S. Census, demonstrates that the county in which the watershed is located is very densely populated. Table 1-1 also shows population growth for Harris County (U.S. Census Bureau 2010).

Table 1-1: County Population and Density

County	2000 U.S.	2000 Population Density	2010 U.S.	2010 Population Density (per square mile)
Name	Census	(per square mile)	Census	
Harris	3,400,578	1,967	4,092,459	2,367

Source: U.S. Census 2000 and 2010

City of Houston is the largest City in the Study Area and is anticipated to grow by 13% from 2010 to 2030, according to the Texas Water Development Board (TWDB) (TWDB 2013). Table 1-2 lists TWDB population growth estimates for City of Houston from 2010 to 2030.

Table 1-2: Whiteoak Bayou Watershed Population Increases by City, 2010 to 2030

City	2010 Census Population	2020 Population Estimate	2030 Population Estimate	Growth Rate (2010- 2030)
Houston	2,099,451	2,201,986	2,377,662	13%

Source: Region H - Draft Population and Municipal Demand Projections for 2016 Regional and 2017 State Water Plan http://www.twdb.state.tx.us/waterplanning/data/projections/2017/demandproj.asp

Population estimates for each Assessment Unit drainage area were derived from the 2010 Census and are provided in Table 1-3.

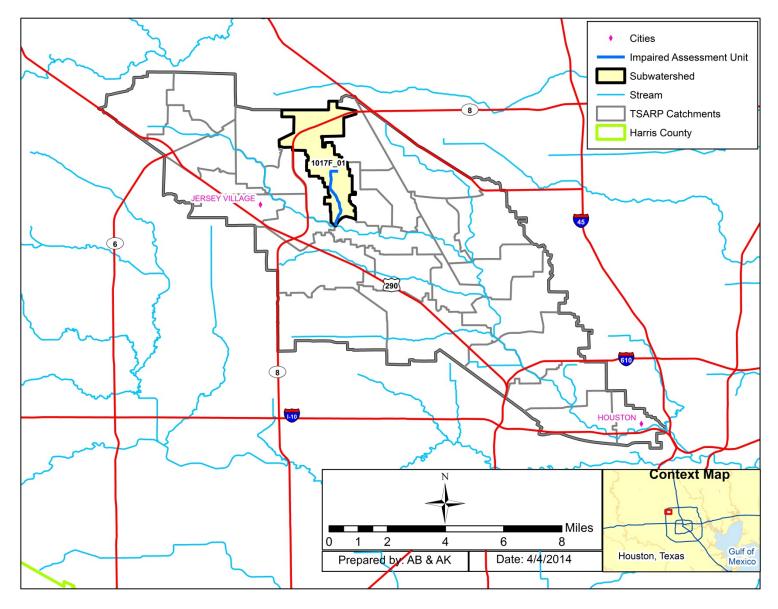


Figure 1-1: Location Map for Whiteoak Bayou Watershed

1-3 June 2014

Table 1-3: Population estimate by Assessment Unit

Segment Name	Assessment	2010 Census	2010 Census
	Unit	Population Estimate	Household Count
Rolling Fork Creek	1017F_01	8,935	3,247

1.2 Summary of Existing Data

The following subsections summarize existing data relevant to soil, land cover, and precipitation throughout the watershed as well as the chemical and physical characteristics of the waterbodies using ambient water quality, and stream flow.

1.2.1 Soil

The geology of the Whiteoak Bayou Watershed is comprised of moderately to very loamy soils. The Soil Survey Geographic (SSURGO) Database National Resources Conservation Service (NRCS) 2012 information was used to characterize soils in the Study Area. The NRCS groups the runoff potential into four hydrologic soil groups, with group A being the highest infiltration rate and group D being the slowest. The hydric groups of the soils in the Whiteoak Bayou watershed is mostly group D, which indicates that these soils have a low infiltration rate, and thus a high-runoff potential when thoroughly wet. The infiltration rate of the Wockley soil series is considered low, as it is in hydric group C (Soil Survey Division Natural Resources Conservation Service United States Department of Agriculture 1994). As shown in Figure 1-2, the soil types that dominate the watershed are the Addicks, Clodine, Gessner, and Wockley soil series. Table 1-4 lists the characteristics of soil types and the soil distribution in the Study Area.

1-4 June 2014

Table 1-4: Characteristics of Soil Types and Soil Type Distribution in Whiteoak Bayou Subwatershed

NRCS Soil Type	Surface Texture	Soil Series Name	Hydro-logic Soil Group	Soil Drainage Class	Average Available Water Storage (cm)	Percent of Watershed Area
TX201	Loam	Addicks loam	B/D	Poorly Drained	30	34.5%
TX201	loam	Clodine Loam	B/D	Poorly Drained	25.48	58.5%
TX201	Loam	Gessner loam	B/D	Poorly Drained	24.95	2.4%
TX201	Fine sandy loam	Wockley fine sandy loam	C/D	Somewhat Poorly Drained	24.18	4.6%

All information derived from SSURGO data: http://datagateway.nrcs.usda.gov/

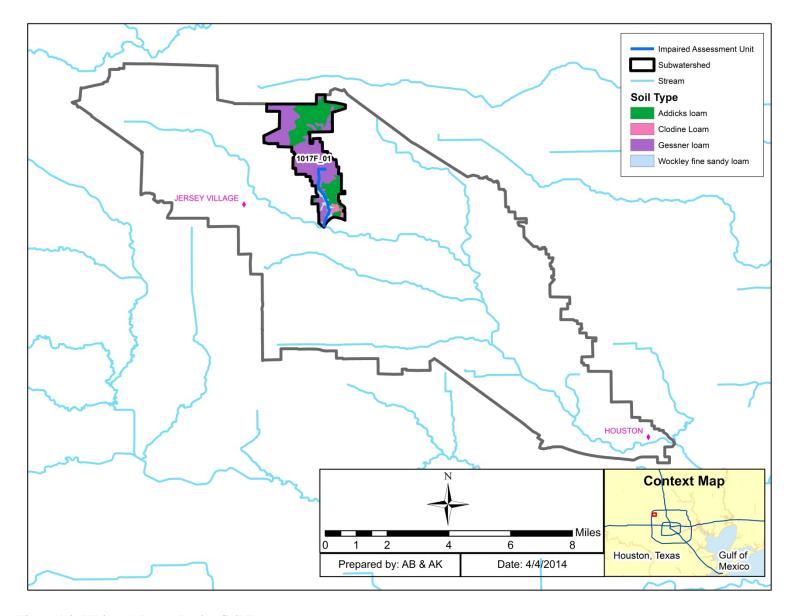


Figure 1-2: Whiteoak Bayou Region Soil Types

1-6 June 2014

1.2.2 Land Cover

As previously noted, the northern and southern portions of the Whiteoak Bayou watershed are heavily developed while the lower and middle regions are sparsely developed. Table 1-5 summarizes the acreages and the corresponding percentages of the land cover categories for the contributing subwatershed associated with the impaired assessment unit in the Whiteoak Bayou Watershed. The land cover data were retrieved from the National Oceanic and Atmospheric Administration (2011) land cover database obtained from Houston-Galveston Area Council. The total acreage of each segment in Table 1-5 corresponds to the watershed delineation in Figure 1-3. The predominant land cover category in this watershed is developed land (83%), followed by forest (12%) and hay/pasture (2%).

Table 1-5: Aggregated Land Cover Summaries by Assessment Unit

Aggregated Land Cover Category	Area (ac)	Percent (%)
Open Water	18.0	0.6%
Developed, Open Space	595.3	21.3%
Developed, Low Intensity	682.1	24.4%
Developed, Medium Intensity	799.8	28.6%
Developed, High Intensity	236.2	8.4%
Barren Land	6.2	0.2%
Deciduous Forest	151.4	5.4%
Evergreen Forest	144.3	5.2%
Mixed Forest	29.3	1.0%
Shrub/Scrub	39.7	1.4%
Herbaceous	35.3	1.3%
Hay/Pasture	50.0	1.8%
Woody Wetlands	10.9	0.4%

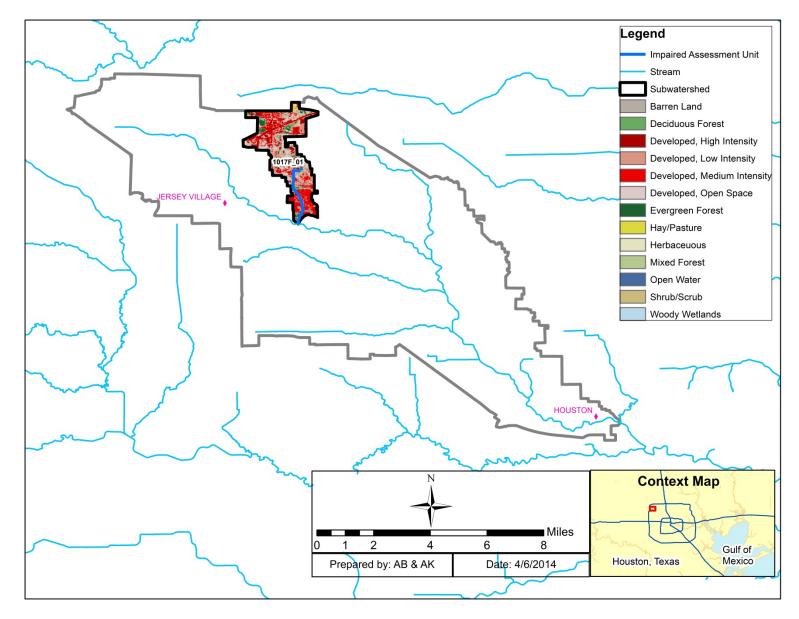


Figure 1-3: Land Cover Map

1-8 June 2014

1.2.3 Precipitation

There are no rain gauges currently in operation within the Study Area; however, four gages (Figure 1-4) within reasonable distance were used in this study. The gages are maintained by the Harris County Office of Homeland Security and Emergency Management (HCOEM).

Table 1-6 summarizes total annual rainfall for the four gages for a 13-year period. It should be noted that two gages, Gage 545 and Gage 555, were not operational until 2001. Also, as the 2001 dataset for both these gages were not completely available, they were not used for calculating the overall averages. The region has high levels of humidity and receives annual precipitation ranging between 42.4 and 48 inches per year as shown in Table 1-6. Based on data for the period 2000 to 2012, the watershed average rainfall is around 45.7 inches per year.

To evaluate the distribution of rainfall across the watershed, Thiessen polygons were developed for each rainfall gage as shown in Figure 1-4. Average rainfall by subwatershed was also calculated and summarized in Table 1-7. Average rainfall amount in the Study Area was 45.4 inches.

Table 1-6: Annual Totals at HCOEM Rainfall Gages in Whiteoak Bayou Watershed

Cago number							Year							Averege
Gage number	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Average
Gage 545	n/a	n/a	48.82	49.91	64.83	37.12	61.28	70.99	44.71	38.52	42.66	23.2	45.88	48.0
Gage 550	39.61	59.33	48.15	42.13	62.63	34.59	53.84	68.49	39.26	51.51	39.01	22.12	42.56	46.4
Gage 555	n/a	n/a	49.71	40.08	62.95	42.0	52.66	63.4	53.46	35.11	37.04	24.4	43.84	45.9
Gage 1670	36.7	65.98	50.42	38.48	59.8	39.97	52.68	60.21	20.79	32.86	36.04	16.68	40.2	42.4
Average rainfall across watershed (inches)										45.7				

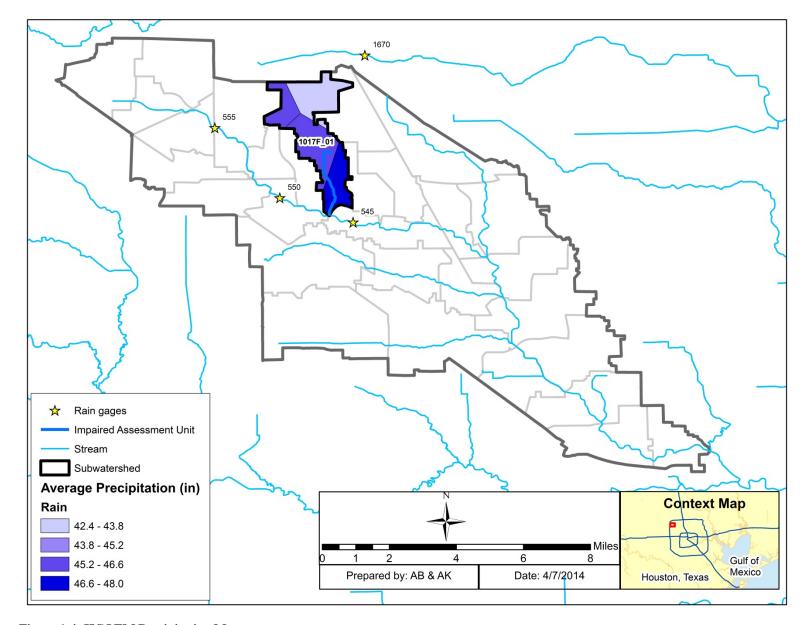


Figure 1-4: HCOEM Precipitation Map

1-11 June 2014

Table 1-7: Average Annual HCOEM Precipitation in the Whiteoak Bayou Subwatershed, 2000-2012

Segment Name	Assessment Unit	Average Annual (Inches)
Rolling Fork Creek	1017F_01	45.4

1.2.4 Ambient Water Quality

Considerable amounts of ambient water quality data are available to support water quality assessment and development of TMDLs for segments in the Whiteoak Bayou Watershed. Historical indicator bacteria data for the period 2007 to 2012 were obtained from the TCEQ Surface Water Quality Monitoring Information System (SWQMIS) database. The data corresponds to *Escherichia coli* samples (46 samples).

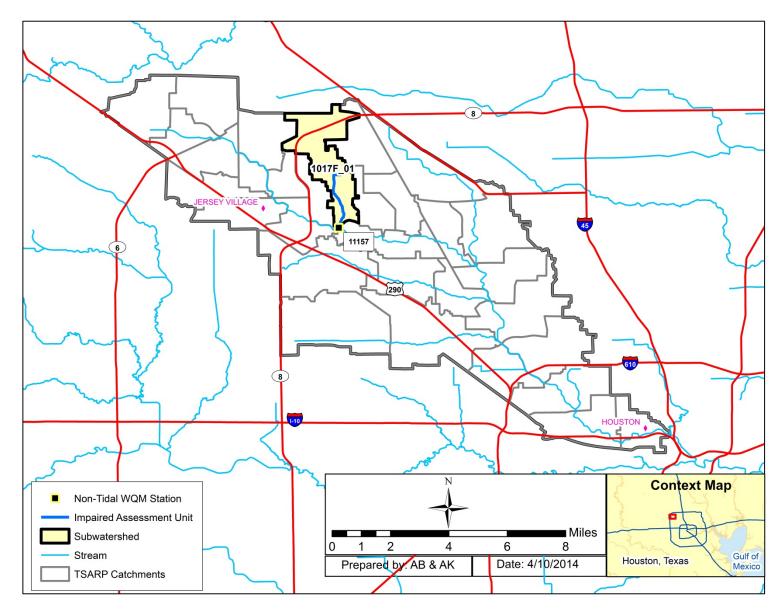

Table 1-8 summarizes the historical ambient water quality data for indicator bacteria (2007-2012) for the select TCEQ Water Quality Monitoring (WQM) station in the Whiteoak Bayou Watershed. Figure 1-5 shows the location of the WQM station with indicator bacteria data. The complete ambient water quality data set for bacteria used to prepare Table 1-8 is provided in Appendix A. Table 1-8 presents the number of indicator bacteria samples, as well as the geometric mean of the concentrations for each indicator, and the number and percentage of single sample exceedances of the Texas SWQS. A more in-depth discussion of the analysis of this data set is provided in Subsections 2.3 and 2.4.

Table 1-8: Historical Water Quality Data for TCEQ Station from 2007 to 2012

Assessment Unit	Station ID	Indicator Bacteria	Geometric Mean Concentration (MPN/100ml)	Number of Samples	Number of Samples Exceeding Single Sample Criterion	% of Samples Exceeding
1017F_01	11157	EC	698.75	46	30	65.22%

EC: E.coli

Geometric Mean Criteria: 126 MPN/100ml for EC Single Sample Criteria: 399 MPN/100ml for EC

Figure 1-5: WQM Station Location

1-13 June 2014

1.2.5 Stream Flow Data

Stream flow data is key information when conducting water quality assessments such as TMDLs. The U.S. Geological Survey (USGS) does not maintain any current flow gages in the Study Area. To address this deficiency, flow projections were developed for the freshwater streams in the Study Area using long-term flow records from USGS gage stations outside the Study Area, but within the Whiteoak Bayou watershed. The flow projection methodology is described in Appendix D.

1.3 Whiteoak Bayou Seasonality

Seasonal differences in indicator bacteria concentrations were assessed by comparing historical bacteria concentrations collected in the warmer months versus those collected during the cooler months. The monthly average temperatures for Houston obtained from NOAA (Table 1-9) were used to divide the data sets into warmer $(25 - 29^{\circ}C)$ and cooler months $(12 - 21^{\circ}C)$. Based on these temperature ranges, November, December, January, February, and March were considered the cooler months; May, June, July, August, and September were warmer months.

Table 1-9: Average Monthly Temperatures for Houston Hobby AP, TX (1981-2010)

Month	Daily Max (°C)	Daily Min (°C)	Daily Mean (°C)	Classification
Jan	17.4	7.3	12.4	Cool
Feb	19.5	9.2	14.3	Cool
Mar	23.1	12.7	17.9	Cool
Apr	26.3	15.9	21.1	n/a
May	29.9	20.1	25	Warm
Jun	32.8	23.1	27.9	Warm
Jul	34.2	24.1	29.2	Warm
Aug	34.1	24.1	29.1	Warm
Sep	31.8	22	26.9	Warm
Oct	27.8	16.8	22.3	n/a
Nov	22.5	11.9	17.2	Cool
Dec	18.6	8.2	13.4	Cool

Note: Temperature values from NOAA Houston Hobby Station (degrees Fahrenheit) have been converted to degrees Celsius. http://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/climate-normals/1981-2010-normals-data

To determine if there was a statistically significant difference between cool and warm months, a two-tailed *t*-test was conducted on log transformed data between the warmer months and cooler months for WQM stations with six or more bacteria samples. Geometric means were

also calculated for the warmer and cooler months. Table 1-10 shows the seasonal variation for the one station for *E coli*.

For *E coli*, the WQM station exhibited higher geometric mean concentrations for the warmer months than the colder months. Though the station showed a statistically significant difference at the 95% confidence interval between the warmer and cooler months, this cannot be confirmed as the number of samples was very small. Also, in the Whiteoak Bayou TMDL published in 2008 (texasnetdmr.org/assets/public/waterquality/tmdl/22buffalobayou/22-finalreport_dec06.pdf), a larger area was sampled and it was concluded in that report that there was no difference in *E coli* concentration between the warmer and colder months.

Table 1-10: Seasonal Differences for *E coli* Concentrations

			War	m Months	Co		
Segment	Station ID	Indicator	n	Geomean (MPN/100 ml)	n	Geomean (MPN/100 ml)	<i>p</i> - value
1017F_01	11157	EC	15	989.07	19	426.07	0.043

EC: E coli, n = number of samples

p-value is based on a t-test conducted at each station using single sample concentrations.

CHAPTER 2

PROBLEM IDENTIFICATION AND WATER QUALITY TARGET

2.1 Pollutant of Concern: Characteristics of Bacterial Indicators

The contact recreation use is assigned to almost every designated water body in the State of Texas, although full support of the contact recreation use is not a guarantee that the water is completely safe of disease-causing organisms. The evolution of the contact recreation criteria currently used by Texas began with criteria first published in 1968 based on general studies done on lakes in the Midwest and New York using fecal coliform bacteria as an indicator of the potential presence of fecal contamination (USEPA 1986). The USEPA-recommended criteria for recreational waters in 1976 included a geometric mean criterion: no more than 200 counts/dL based on five samples collected over a 30-day period; and an instantaneous criterion: no more than 10 percent of the individual grab samples could exceed 400 counts/dL (USEPA 1986). Shortly thereafter, these recommended criteria were adopted by the State of Texas in its SWQSs. The fecal coliform criteria, and the studies on which they were based, were heavily criticized by the USEPA in 1986 (USEPA 1986) following an extensive program of epidemiology testing. During that decade, USEPA studies found that fecal coliform was not a good predictor of the risk of disease and recommended new tests and criteria. The USEPA recommended new criteria for swimming areas, using E coli and enterococci as new fecal indicator organisms, and incorporating the idea of varying criteria with the level of swimming use.

In Texas, three indicator bacteria have been analyzed in water samples collected to determine support of the contact recreation use: fecal coliform and *E coli* in freshwater and fecal coliform and enterococci in marine waters. Currently, *E coli* and enterococci bacteria are measured to determine the relative risk of contact recreation, depending on whether the water body is fresh or marine. The presence of these bacteria indicates that associated pathogens from the fecal waste of warm-blooded species (human or animal) may be reaching a body of water. High concentrations of certain bacteria in water indicate there may be an increased risk of becoming ill from recreational activities.

Texas water quality standards (WQS) for contact recreation allow exemptions for waterbodies where elevated bacteria concentrations frequently occur due to sources of pollution that cannot be reasonably controlled by the existing regulations, or where recreation is considered unsafe for other reasons, such as barge or ship traffic (e.g., the Houston Ship Channel), unrelated to water quality. This exemption and reclassification to less strict "noncontact recreation" standards has been applied to only a few waterbodies in Texas.

2.2 TCEQ Water Quality Standards for Contact Recreation

The TCEQ is responsible for administering provisions of the constitution and laws of the State of Texas to promote judicious use of and protection of the quality of waters in the state. Included in this responsibility is the continuous monitoring and assessment of water quality to evaluate compliance with SWQSs established within Texas Water Code, §26.023 and Title 30 Texas Administrative Code (TAC), §307.1-307.10. Texas SWQS, 30 TAC §307.4, specify the designated uses and general criteria for all surface waters in the state.

This report focuses on the Whiteoak Bayou Watershed which is on the federal Clean Water Act §303(d) list because it does not support contact recreation use. Table 2-1 lists the assessment unit within Whiteoak Bayou that is on the 2012 303(d) list and provides a description of the assessment unit. Table 2-2 summarizes the designated uses and the applicable bacteria indicators used to assess the contact recreation use of each waterbody addressed in this report. Table 2-1 also identifies the year the waterbody was placed on the Texas' Clean Water Act §303(d) List for nonsupport of contact recreation use. Table 2-2 also provides the stream length in miles, and other designated uses for the waterbody. The TMDLs in this report only address the contact recreation use.

Table 2-1: Synopsis of Texas 2012 303(d) List

Assessment Unit	Segment Name	Description	Category	Year First Listed
1017F_01	Rolling Fork Creek (unclassified water body)	From the Whiteoak Bayou Above Tidal confluence to a point 3.9km (2.4mi) upstream	5a	2012

Table 2-2: Synopsis of Texas Integrated Report for the Whiteoak Bayou Watershed

Assessment Unit	Commont Name	Danamatan	Designated Use*				Year	Stream	
	Segment Name	Parameter	CR	AL	GU	FC	Impaired	Length (miles)	
1017F_01	Rolling Fork Creek (unclassified water body)	E.coli	NS	FS	cs	NA	2012	2.24	

CR: Contact recreation; AL: Aquatic Life; GU: General Use; FC: Fish Consumption, NS = Not Supporting; FS = Fully Supporting; CS= Screening Level Concern; NA= Not Assessed

The excerpts below from Chapter 307, Texas SWQS stipulate how water quality data were assessed to determine support of contact recreation use as well as how the water quality targets are defined for each bacterial indicator. In addition to the specific requirements of §307.7 outlined below, the TMDLs for the Whiteoak Bayou Watershed will also adhere to §307.5 of the SWQS which defines the antidegradation policy and procedures that apply to authorized wastewater discharges, TMDLs, waste load evaluations, and any other miscellaneous actions, such as those related to man-induced nonpoint sources of pollution, which may impact the water in the state.

Excerpted from 30 Texas Administrative Code (TAC) §307.7. Site-specific Uses and Criteria.

- (a) Uses and numerical criteria are established on a site-specific basis in Appendices A,B,D,E,F and G of §307.10 of this title (relating to Appendices A G). Site-specific uses and numerical criteria may also be applied to unclassified waters in accordance with §307.4(h) of this title (relating to General Criteria) and §307.5(c) of this title (relating to Antidegradation). Site-specific criteria apply specifically to substances attributed to waste discharges or human activities. Site-specific criteria do not apply to those instances in which surface waters exceed criteria due to natural phenomena. The application of site-specific uses and criteria is described in §307.8 of this title (relating to the Application of Standards) and §307.9 of this title (relating to the Determination of Standards Attainment).
 - (b) Appropriate uses and criteria for site-specific standards are defined as follows.
- (1) Recreation. Recreational use consists of four categories primary contact recreation, secondary contact recreation 1, secondary contact recreation 2, and noncontact recreation waters. Classified segments are designated for primary contact recreation unless sufficient sitespecific information demonstrates that elevated concentrations of indicator bacteria frequently occur due to sources of pollution which cannot be reasonably controlled by existing regulations, wildlife sources of bacteria are unavoidably high and there is limited aquatic recreational potential, or primary or secondary contact recreation is considered unsafe for other reasons such as ship or barge traffic. In a classified segment where contact recreation is considered unsafe for reasons unrelated to water quality, a designated use of noncontact recreation may be assigned criteria normally associated with contact recreation. A designation of primary or secondary contact recreation is not a guarantee that the water so designated is completely free of disease-causing organisms. Indicator bacteria, although not generally pathogenic, are indicative of potential contamination by feces of warm blooded animals. The criteria for contact recreation are based on these indicator bacteria, rather than direct measurements of pathogens. Criteria are expressed as the number of bacteria per 100 milliliters (ml) of water (in terms of colony forming units, most probable number, or other applicable reporting measures). Even where the concentration of indicator bacteria is less than the criteria for primary or secondary contact recreation, there is still some risk of contracting waterborne diseases. Additional guidelines on minimum data requirements and procedures for evaluating standards attainment are specified in the TCEQ Guidance for Assessing and Reporting Surface Water Quality Data in Texas, as amended.

(A) Freshwater

- (i) Primary contact recreation. The geometric mean criterion for E coli is 126 per 100 mL. In addition, the single samples criterion for E coli is 399 per 100 mL.
- (ii) Secondary contact recreation 1. The geometric mean criterion for E coli is 630 per 100 mL.
- (iii) Secondary contact recreation 2. The geometric mean criterion for E coli is 1,030 per 100 mL.
- (iv) Noncontact recreation. The geometric mean criterion for E coli is 2,060 per 100 mL.

(v) For high saline inland water bodies where enterococci is the recreational indicator for instream bacteria sampling at all times for the classified water body and for the unclassified water bodies that are within the watershed of that classified segment, unless it is demonstrated that an unclassified water body is not high saline. E coli is the applicable recreational indicator for instream bacteria sampling at all times for unclassified water bodies where conductivity values indicate that the water bodies are not high saline. For high saline water bodies with primary contact recreation, the geometric mean criterion for enterococci is 33 per 100 ml and the single sample criterion is 78 per 100 ml. For high saline inland waters with secondary contact recreation 1, the geometric mean criterion for enterococci is 165 per 100 ml. For high saline inland waters with secondary contact recreation 2, the geometric mean criterion for enterococci is 270 per 100 ml. For high saline inland water bodies with noncontact recreation, the geometric mean criterion for enterococci is 540 per 100 ml.

(B) Saltwater

- (i) Primary contact recreation. The geometric mean criterion for enterococci is 35 per 100 mL. In addition, the single sample criterion for enterococci is 104 per 100 mL.
- (ii) Secondary contact recreation 1. A secondary contact recreation 1 use for tidal streams and rivers can be established on a site-specific basis in §307.10 of this title if justified by a use-attainability analysis and the water body is not a coastal recreation water as defined in the Beaches Environmental Assessment and Coastal Health Act of 2000 (BEACH Act). The geometric mean criterion for enterococci is 175 per 100 mL.
- (iii) Noncontact recreation. A noncontact recreation use for tidal streams and rivers can be established on a site-specific basis in §307.10 of this title if justified by a use-attainability analysis and the water body is not a coastal recreation water as defined in the BEACH Act. The geometric mean criterion for enterococci is 350 per 100 mL.
- (C) Fecal coliform bacteria. Fecal coliform bacteria can be used as an alternative instream indicator of recreational suitability in high saline inland water bodies where enterococci is the designated recreational indicator in Appendix A of §307.10 of this title for two years after the adoption of this title to allow time to collect sufficient data for enterococci. Fecal coliform criteria for high saline inland water bodies are as follows:
 - (i) Primary contact recreation. The geometric mean criterion for fecal coliform is 200 per 100 mL. In addition, single sample criterion for fecal coliform is 400 per 100 mL.
 - (ii) Secondary contact recreation 1 and 2. The geometric mean criterion for fecal coliform is 1,000 per 100 mL.
 - (iii) Noncontact recreation. The geometric mean criterion for fecal coliform is 2,000 per 100 mL.
- (D) Swimming advisory programs. For areas where local jurisdictions or private property owners voluntarily provide public notice or closure based on water quality, the use of

any single sample or short-term indicators of recreational suitability are selected at the discretion of the local managers of aquatic recreation. Guidance for single-sample bacterial indicators is available in the USEPA document entitled Ambient Water Quality Criteria for Bacteria - 1986. Other short-term indicators to assess water quality suitability for recreation -- such as measures of streamflow, turbidity, or rainfall -- may also be appropriate.

As stipulated in 2012 Guidance for Assessing and Reporting Surface Water Quality in Texas (TCEQ 2012), utilization of the geometric mean to determine compliance for any of the bacterial indicators depends on the collection of a minimum of 10 samples (20 for bacteria) from the last seven years or the most recently collected 10 samples (20 for bacteria) for up to ten years are used to determine use support. The 2012 Guidance for Assessing and Reporting Surface Water Quality in Texas (TCEQ 2010) specifically states the following:

- § Ten samples will also be required for listing and delisting water bodies for which the assessment method is based on an average. Larger sample sizes increase the state's confidence that impairments are not missed. Although we will use more than 10 samples, if available, it is not reasonable at this time to require more than 10 samples for a minimum data set, given the monitoring resources and currently available data.
- **§** The 2012 assessment period of record for the last seven years is December 1, 2003 through November 30, 2010. Samples from these seven years are evaluated when available, and if necessary, the most recent samples collected in the preceding three years (December 1, 1999 through November 30, 2002) can also be included to meet the requirements for minimum sample number.

2.3 Problem Identification

Pursuant to \$303(d) of the federal Clean Water Act, states must establish TMDLs for pollutants contributing to violations of WQSs. Table 2-1 identifies Whiteoak Bayou requiring a TMDL through identification as Category 5 of the 2012 Texas Water Quality Inventory and \$303(d) List (TCEQ 2012). Table 2-3 lists the TCEQ WQM station from which ambient water quality data were summarized to support the decision to place Whiteoak Bayou on the TCEQ 303(d) List. The location of the WQM station is displayed in Figure 2-1.

A number of changes have occurred in the past 10 years that warrant refinements in how indicator bacteria data are used to support water quality assessments and TMDL development in Texas. Some key factors that influence which indicator bacteria to use for water quality assessment and TMDL development and the period of record to use include:

- § Changes in land cover and locations of Texas Pollution Discharge Elimination System (TPDES) permitted facilities
- **§** Changing the indicator bacteria in the 2000 TCEQ surface water quality standards (SWQS) from fecal coliform to *E coli* for fresh water, and enterococci for marine waters
- **§** Refinements in the TCEQ surface water quality monitoring procedures

§ Changes in the TCEQ guidance, Assessing and Reporting Surface Water Quality in Texas

As a result of these evolving factors in the water quality management arena associated with the protection and maintenance of contact recreation use, the historical data set used to support the TMDLs in this report have been narrowed, wherever possible, to utilize only *E coli* and data from 2007 through 2012. However, when only Fecal Coliform data are available, they are discussed, but do not affect the TMDL calculation.

Table 2-3: Water Quality Monitoring Station Used for 303(d) Listing Decision

Assessment Unit	Water Body	Description	Monitoring Station IDs	Year
1017F_01	Rolling Fork Creek (unclassified water body)	From the Whiteoak Bayou Above Tidal confluence to a point 3.9km (2.4mi) upstream	11157	2012

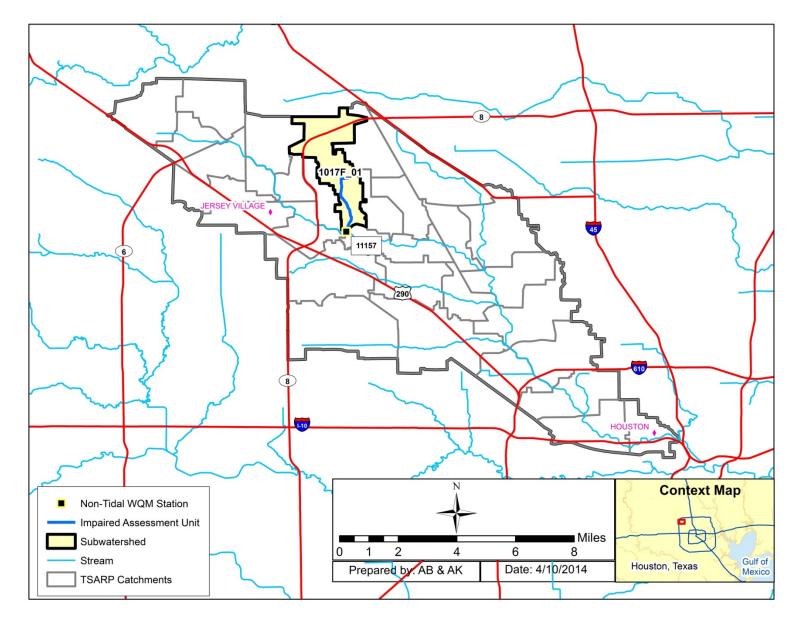


Figure 2-1: TCEQ WQM Station in the Whiteoak Bayou Watershed

2-7 June 2014

2.4 Water Quality Targets for Contact Recreation

The Code of Federal Regulations (40 CFR §130.7(c)(1)) states that, "TMDLs shall be established at levels necessary to attain and maintain the applicable narrative and numerical water quality standards." The Texas SWQSs (TCEQ 2010) provide numeric and narrative criteria to evaluate attainment of designated uses. The basis for water quality targets for all TMDLs developed in this report will be the numeric criteria for bacterial indicators from the 2010 Texas SWQSs as described in Subsection 2.2 above. *E coli* is the preferred indicator bacteria for assessing contact recreation use in freshwater.

Several studies have been performed by the USEPA that show a stronger link between the concentrations of *E coli* and enterococci and the concentrations of fecal pathogens than the previous standard, fecal coliform. The USEPA studies found that in freshwater streams, *E coli* concentrations were the strongest predictor of illness following contact recreation. The TCEQ adopted the limit of 399 per dL for single samples of *E coli* and a geometric mean limit of 126 per dL for waterbodies that have been designated for contact recreation use. Within tidal streams and saltwater bodies, however, the USEPA determined that enterococci concentrations were the strongest predictor of illness. The TCEQ adopted a limit of 104 per dL for enterococci in any single sample, and a limit of 35 per dL for the geomean of all samples at any location for enterococci concentrations within a tidal stream designated for contact recreation uses (TCEQ 2010).

The water quality target for the TMDLs for freshwater segments is to maintain concentrations below the geometric mean criterion of 126 counts per dL for *E coli*. Maintaining the geometric mean criterion for each indicator bacteria is expected to be protective of the single sample criterion also and therefore will ultimately result in the attainment of the contact recreation use. TMDLs will be based on a percent reduction goal required to meet the geometric mean criterion.

The water quality target for each waterbody will incorporate an explicit 5 percent margin of safety (MOS). For example, if *E coli* is utilized to establish the TMDL, then the water quality target would be 379 counts/dL, 5 percent lower than the single sample water quality criterion (399 counts/dL) and the geometric mean water quality target would be 120 counts/dL, 5 percent lower than the criterion value (126 counts/dL).

For non-tidal segments, each water quality target will be used to determine the allowable bacteria load that is derived by using the actual or estimated flow record multiplied by the instream criteria minus a 5 percent MOS.

CHAPTER 3 POLLUTANT SOURCE ASSESSMENT

To support TMDL development, a pollutant source assessment attempts to characterize known and suspected sources of pollutant loading to impaired waterbodies. Pollutant sources within a watershed are categorized and quantified to the extent that information is available. Fecal bacteria such as *E coli* and Enterococcus originate in the intestines of warm-blooded species (human and animal), and sources of bacteria may be point (permitted) or nonpoint (unregulated) in nature.

Point sources are permitted through the National Pollution Discharge Elimination System (NPDES) program. Some stormwater runoff may be permitted through NPDES as municipal separate storm sewer systems (MS4). Other unregulated sources of stormwater runoff that typically cannot be identified as entering a waterbody through a discrete conveyance at a single location are often referred to as nonpoint sources. For example, unregulated sources include land activities that contribute bacteria to surface water as a result of rainfall runoff or on-site sewage system facilities. For the TMDLs presented in this report, all sources of pollutant loading not regulated by a NPDES/TPDES permit are considered nonpoint sources. The following discussion describes what is known regarding permitted and unregulated sources of bacteria in the impaired watersheds.

3.1 Point Sources: NPDES/TPDES-Permitted Sources

Under 40 CFR, §122.2, a point source is described as a discernible, confined, and discrete conveyance from which pollutants are or may be discharged to surface waters. Under the Texas Water Code, TCEQ has adopted rules and procedures to issue permits to control the quantity and quality of discharges into or adjacent to waters of the state through the TPDES program. NPDES/TPDES-permitted facilities classified as point sources that may contribute bacteria loading to surface waters include:

- **§** TPDES municipal wastewater treatment facilities (WWTF)
- **§** TPDES industrial WWTF (stormwater and/or wastewater)
- § TPDES municipal no-discharge WWTF
- § TPDES regulated stormwater (municipal separate storm sewer systems)
- **§** TPDES Concentrated Animal Feeding Operation (CAFO)

Point source discharges such as WWTFs could result in discharge of elevated concentrations of fecal bacteria if the plant is not properly maintained, is of poor design, or if flow rates exceed the treatment capability of the plant. Industrial WWTFs may contain fecal bacteria in their effluent. While no-discharge facilities do not discharge wastewater directly to a waterbody, it is possible that collection systems associated with these types of facilities may be a source of bacteria loading to surface waters. Permitted stormwater runoff from TPDES regulated discharge areas, called municipal separate storm sewer systems, may also contain high fecal bacteria concentrations. Finally, CAFOs are recognized by USEPA as significant potential source of pollution, and may have the potential to cause serious impacts to water quality if not properly managed.

The Study Area (1017F_01) has four NPDES/TPDES-permitted sources. A significant portion of the Study Area is regulated under the TPDES stormwater discharge permit jointly held by Harris County, HCFCD, City of Houston, and Texas Department of Transportation. There are no NPDES-permitted CAFOs within the Study Area.

3.1.1 Permitted Sources: NPDES/TPDES Wastewater Facility Point Source Discharges

There are four TPDES-permitted facilities in the watershed; one of which is permitted to discharge treated domestic wastewater continuously to surface waters addressed in these TMDLs. The location of all four facilities is shown in Figure 3-1 with additional details on each provided in Table 3-1. As shown in Table 3-1, the permitted flow associated with the continuously discharging facility was 0.045 MGD (TCEQ, 2010). The three facilities permitted in the watershed that do not have large continuous discharges include Heron Lakes WWTP, West Harris County MUD 21 WWTF, and Rolling Fork PUD WWTF, all which have permitted flows less than 0.5 MGD.

TPDES-permitted facilities that discharge treated wastewater are required by their permit to monitor their effluent for certain parameters. A summary of the discharge monitoring report (DMR) data for the facilities in the watershed is shown in Table 3-2. In addition all four TPDES facilities in the Study Area: 13433-001, 13623-001, 12342-001, and 11188-001 also collect fecal indicator bacteria data. Table 3-2 provides a summary of the self-reporting data available for the four facilities in the Study Area, while Table 3-3 lists the number of reported monthly exceedances of the daily average concentration of 126 cfu/100 mL, and the number of reported daily exceedances of the daily maximum of 399 cfu/100 mL. As shown in the tables, Facility 13433-001 exceeded *E.coli* permit limit once during the monitoring time frame.

The discharge monitoring data for each of the plants is presented in Appendix C.

3-2 June 2014

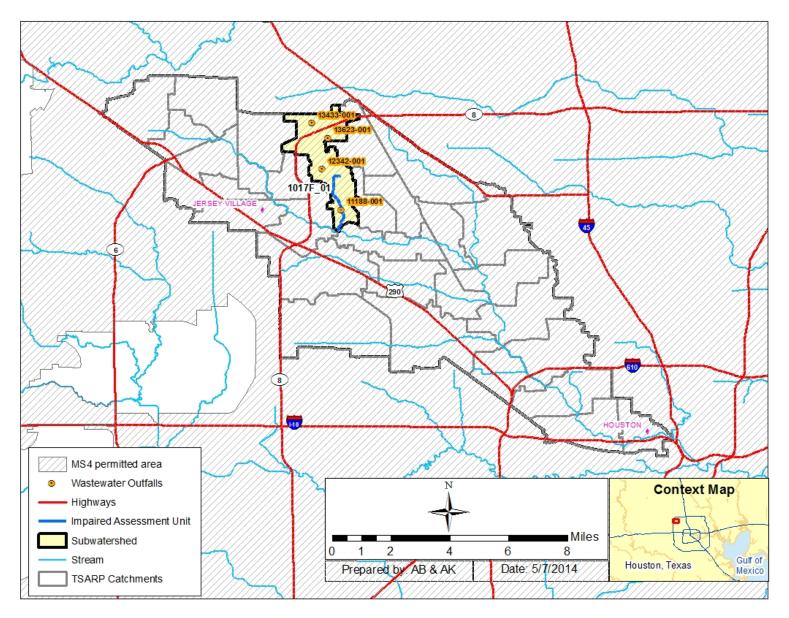


Figure 3-1: TPDES-Permitted Facilities in the Whiteoak Bayou Watershed

3-3 June 2014

Table 3-1: TPDES-Permitted Facilities in the Study Area

Assessm ent Unit	Receiving Water	TPDES Number	NPDES Number	Facility Name	Facility Type	Year Active	DTYPE	Permitt ed Flow (MGD)	Average Monthly Flow (MGD)
1017F_01	Whiteoak Bayou Above Tidal	13433-001	TX0103705	Heron Lakes WWTP	Sewerage systems	2010	D	n/a	0.13
1017F_01	Whiteoak Bayou Above Tidal	13623-001	TX0109126	West Harris County MUD 21 WWTF	Sewerage systems	2010	D	0.12	0.06
1017F_01	Whiteoak Bayou Above Tidal	12342-001	TX0085821	Maple Leaf Gardens WWTP	Sewerage systems	2010	D	0.045	0.01
1017F_01	Whiteoak Bayou Above Tidal	11188-001	TX0026697	Rolling Fork PUD WWTP	Sewerage systems	2010	D	0.49	0.22

Source: TCEQ Wastewater Outfall Shapefile, August 2013, EPA, ICIS monitoring data search August 2013

MGD = Millions of Gallons per Day; n/a = Not Applicable TYPE: D = Domestic < 1 MGD; W=Domestic >= 1 MGD

Table 3-2: DMR Data for Permitted Wastewater Discharges (January 2002-December 2012)

TPDES Number	NPDES Number	Facility Name	Assessment Unit	Stream Name	Dates M	onitored	# of Records	Monthly Average Flow	Permitted Flow
					Start	End		(MGD)*	(MGD)
13433-001	TX0103705	Heron Lakes WWTP	1017F_01	Whiteoak Bayou Above Tidal	6/30/2002	12/31/2012	162	0.13	n/a
13623-001	TX0109126	West Harris County MUD 21 WWTF	1017F_01	Whiteoak Bayou Above Tidal	10/31/2002	12/31/2012	116	0.06	0.12
12342-001	TX0085821	Maple Leaf Gardens WWTP	1017F_01	Whiteoak Bayou Above Tidal	1/31/2004	12/31/2012	107	0.01	0.045
11188-001	TX0026697	Rolling Fork PUD WWTP	1017F_01	Whiteoak Bayou Above Tidal	6/30/2002	12/31/2012	126	0.22	0.49

Source: EPA, ICIS monitoring data search August 2013

Notes: n/a = Not Available, MGD = Millions of Gallons per Day, cfu = Colony Forming Unit; *there were several missing monthly flow data points; these gaps were filled by taking average of flows for the previous and subsequent months.

Table 3-3: *E.coli* Data for Permitted Wastewater Discharges (April 2012 – December 2012)

Facility Name	TPDES Number	NPDES Number	No. Records	Avg Daily Average (cfu/100 mL) Avg Monthly Maximum (asys cfu/100 mL) Exceedances of Maximum Permit Limit (399 cfu/100 mL) Exceedances Average Permit (126 cfu/100 mL)		Maximum Permit Limit		ermit Limit	
						Number	%	Number	%
Heron Lakes WWTP	13433-001	TX0103705	9	120	n/a	1	11.10%	1	11.10%
West Harris County MUD 21 WWTF	13623-001	TX0109126	9	2.4	n/a	0	0	0	0
Maple Leaf Gardens WWTP	12342-001	TX0085821	2	0.5	n/a	0	0	0	0
Rolling Fork PUD WWTP	11188-001	TX0026697	9	2.2	n/a	0	0	0	0

Source: EPA, ICIS monitoring data search August 2013

Notes: MCMX = Measurement: Concentration Maximum, MCAV = Measurement: Concentration Average, n/a = Not Available

3.1.2 Permitted Sources: Sanitary Sewer Overflows

Sanitary sewer overflows (SSO) are overflows from sanitary sewers that most often result from blockages in the sewer collection pipes caused by tree roots, grease and other debris. Occurrences of SSOs are permit violations that must be addressed by the responsible TPDES permittee.

The TCEQ maintains a database of SSO data collected from wastewater operators in the Whiteoak Bayou Watershed. TCEQ Region 12-Houston provided a database for SSO data in the Whiteoak Bayou Watershed (Laird 2013). These data are included in Table 3-4.

As can be seen from Table 3-4, there have been approximately 45 sanitary sewer overflows reported in the Whiteoak Bayou watershed since April 2003. The reported SSOs averaged at 1,805 gallons per event.

The locations and magnitudes of all the reported SSOs within the Whiteoak Bayou watershed are displayed in Figure 3-2. It is important to note that some facilities, such as the West Harris County MUD 11 WWTF, Reid Road MUD No.1 WWTP, and Harris County MUD 6 WWTF, provide wastewater service within the boundary of the Whiteoak Bayou Watershed but the facilities themselves do not discharge to Whiteoak Bayou. The WWTF service area boundaries are shown in Figure 3-2. These data are included in Appendix C and summarized in Table 3-4: Sanitary Sewer Overflow (SSO) Summary.

Table 3-4: Sanitary Sewer Overflow (SSO) Summary

Facility Name	NPDES Permit No.	NPDES Facility ID		Date I	Range	Amount (Gallons)	
	T CHINE NO.			From	То	Min	Max
Heron Lakes WWTP	TX0103705	13433-001	5	4/24/02	11/27/07	5	10,000
West Harris County MUD 21 WWTF	TX0109126	13623-001	6	8/23/02	9/14/07	30	5,000
Maple Leaf Gardens WWTP	TX0085821	12342-001	1	6/15/11	6/15/11	500	500
Rolling Fork PUD WWTP	TX0026697	11188-001	7	11/21/01	11/12/11	5	3,600
West Harris County Mud 11 WWTF	TX0111937	13689-001	1	2/10/03	2/10/03	4,500	4,500
Reid Road MUD No.1 WWTP	TX0053325	11563-001	14	7/26/04	9/12/12	30	14,400
Harris County MUD 6 WWTP	TX0026352	11273-001	11	10/29/02	5/15/10	10	4,000

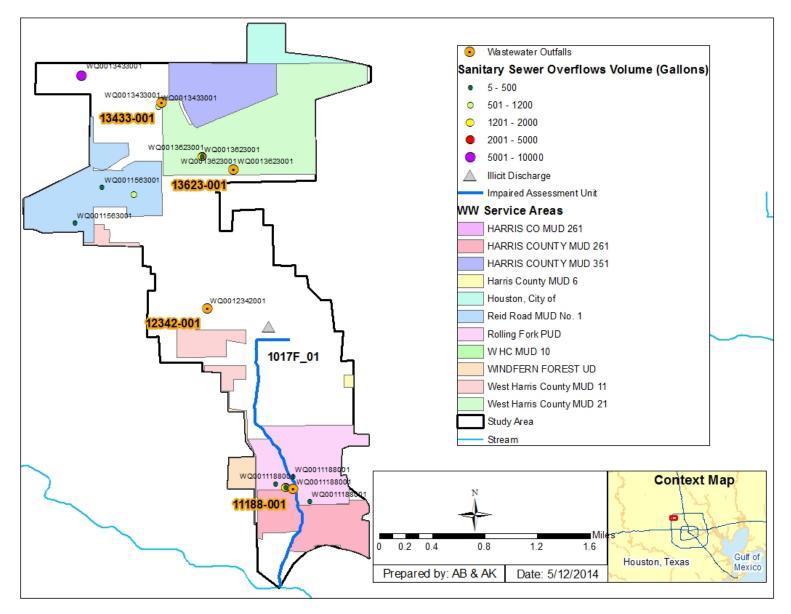


Figure 3-2: Sanitary Sewer Overflow Locations

3-8 June 2014

3.1.3 Permitted Sources: TPDES Regulated Stormwater

In 1990, the USEPA developed rules establishing Phase I of the NPDES Stormwater Program, designed to prevent nonpoint source pollutants from being washed by stormwater runoff into municipal separate storm sewer systems and then discharged into local waterbodies (USEPA 2005). Phase I of the program required medium and large permitted dischargers (those generally serving populations of 100,000 or greater) to implement a stormwater management program as a means to control polluted discharges. Approved stormwater management programs for medium and large permitted discharges are required to address a variety of water quality-related issues, including roadway runoff management, municipal-owned operations, and hazardous waste treatment.

Phase II of the rule extended coverage of the NPDES Stormwater program in 2000 to certain small MS4s. Small MS4s are defined as any MS4 in an urbanized area as defined by the U.S. Census Bureau that was not already covered by a Phase I NPDES Stormwater Permit. The Phase II MS4 program requires operators of regulated small MS4s to obtain NPDES permits and develop a stormwater management program. Programs are designed to reduce discharges of pollutants to the "maximum extent practicable," protect water quality, and satisfy appropriate water quality requirements of the CWA. Small MS4 stormwater programs must address control measures including Public Education Outreach: minimum and Participation/Involvement; Illicit Discharge Detection and Elimination; Construction Site Runoff Control; Post-Construction Runoff Control; and Pollution Prevention/Good Housekeeping.

When evaluating pollutant loads originating from stormwater runoff, a critical distinction must be made between stormwater originating from an area under an NPDES/TPDES regulated discharge permit and stormwater originating from areas not under an NPDES/TPDES regulated discharge permit. To characterize pollutant loads from stormwater runoff, it is necessary to segregate stormwater into two categories:

- 1) permitted stormwater, which is stormwater originating from an NPDES/TPDES-permitted Phase I or Phase II urbanized area; and
- 2) unregulated stormwater, which is stormwater originating from any area outside an NPDES/TPDES-permitted Phase I or Phase II urbanized area.

Within the Whiteoak Bayou watershed, there is only one individual Phase I MS4 program that is currently permitted by TCEQ. This program is operated by:

§ City of Houston/Harris County (Phase I permit)

The Study Area is completely covered under the City of Houston/Harris County MS4 permit (TPDES Permit No. WQ0004685000). The jurisdictional boundary of the Houston MS4 permit is derived from *Urbanized Area Map Results for Texas* which is based on the 2000 U.S. Census and can be found at the USEPA website http://cfpub.epa.gov/npdes/stormwater/urbanmapresult.cfm?state=TX. Also included on Figure 3-2 is the location of illicit discharge that was identified by HCFCD in the watershed (Close, 2013). An image of the illicit discharge that was identified by HCFCD is provided in Figure 3-3.

Shown in Table 3-5 is a summary of the individual watersheds of interest and the percentage of each watershed that is covered by one or more MS4 permits.

Table 3-5: Percentage of Permitted Stormwater in each Watershed

Segment	Receiving Stream	Regulated Entity Name	TPDES Number	Total Area (acres)	Area under MS4 Permit (Acres)	Percent of Watershed under MS4 Jurisdiction
1017F_01	Whiteoak Bayou Above Tidal	City of Houston/ Harris County	WQ0004685000	2799	2799	100%

Figure 3-3: Example illicit discharge, Whiteoak Bayou Above Tidal

3.1.4 Concentrated Animal Feeding Operations

There are no CAFOs located within the Study Area.

3.2 Unregulated Sources: Stormwater, On-site Sewage Facilities, and Direct Deposition

Unregulated sources (nonpoint sources) include those sources that cannot be identified as entering the waterbody at a specific location. The following section describes possible major unregulated sources contributing bacteria loading within the Study Area.

Nonpoint sources of bacteria can emanate from wildlife, various agricultural activities, and domesticated animals, land application fields, urban runoff, failing on-site sewage facilities (OSSF), and domestic pets. Bacteria associated with urban runoff can emanate from humans, wildlife, livestock, and domestic pets. Based on the ability of warm-blooded animals to harbor and shed human pathogens, the current USEPA policy establishes the position that it is inappropriate to conclude that livestock and wildlife sources present no risk to human health from waterborne pathogens. Consequently, states and authorized tribes should not use broad exemptions from the bacteriological criteria for waters designated for primary contact recreation based on the presumption that high levels of bacteria resulting from non-human fecal contamination present no risk to human health (USEPA 2002). Water quality data collected from streams draining urban communities often show existing concentrations of fecal coliform bacteria at levels greater than a state's instantaneous standards. A study under USEPA's National Urban Runoff Project indicated that the average fecal coliform concentration from 14 watersheds in different areas within the United States was approximately 15,000 /dL in stormwater runoff (USEPA 1983). Based on data such as these, unregulated stormwater has the potential to be a significant source of fecal bacteria.

3.2.1 Wildlife and Unmanaged Animal Contributions

E coli and enterococci bacteria are common inhabitants of the intestines of all warm-blooded animals, including wildlife such as mammals and birds. In developing bacteria TMDLs, it is important to identify the potential for bacteria contributions from wildlife by watershed. Wildlife can be naturally attracted to riparian corridors of streams and rivers. With direct access to the stream channel, the direct deposition of wildlife waste can be a concentrated source of bacteria loading to a waterbody. E coli and enterococci bacteria from wildlife are also deposited onto land surfaces, where they may be washed into nearby streams by rainfall runoff.

The Study Area is fairly developed, thereby not providing a favorable habitat for many species of mammals, reptiles, and amphibians.

There are currently insufficient data available to estimate populations and spatial distribution of wildlife and avian species by watershed. Consequently, it is difficult to assess the magnitude of bacteria contributions from wildlife species as a general category. In general, due to the fact that the Study Area is surrounded by urbanized areas, it is unlikely that there exist large quantities of wild animals that could contribute a significant source of bacteria to Whiteoak Bayou.

3.2.2 Unregulated Agricultural Activities and Domesticated Animals

There are a number of unregulated agricultural activities that can also be sources of fecal bacteria loading. Agricultural activities of greatest concern are typically those associated with livestock operations (Drapcho and Hubbs 2002). The following are examples of livestock activities that can contribute to bacteria sources:

- § Processed livestock manure is often applied to fields as fertilizer, and can contribute to fecal bacteria loading to waterbodies if washed into streams by runoff before incorporation.
- **§** Livestock grazing in pastures deposit manure containing fecal bacteria onto land surfaces. These bacteria may be washed into waterbodies by runoff if inadequate buffers exist between pastures and waterbodies.
- **§** Livestock may have direct access to waterbodies and can provide a concentrated source of fecal bacteria loading directly into streams.

The estimated numbers of selected livestock by watershed were calculated based on the 2007 USDA county agricultural census data (USDA 2007). The county-level estimated livestock populations were distributed among watersheds based on GIS calculations of pasture land per watershed, based on the National Land Cover Database (NOAA 2011). It should be noted that these are planning level livestock are not evenly distributed across counties or constant with time.

As shown in Table 3-6, cattle are estimated to be the most abundant species of livestock in the Study Area.

Table 3-6: Livestock and Manure Estimates by Watershed

Type of Animal	Total Animals
Cattle and Calves	13
Horses and Ponies	3
Goats	1
Hogs and Pigs	1
Sheep and Lambs	1
Bison	0
Captive Deer	1
Donkey	1
Rabbits	1
Llamas	0
Pullets	1
Broilers	1
Layers	2
Turkeys	1
Ducks	1
Geese	0
Other Poultry	1
Total Animals	29

According to a livestock study conducted by the American Society of Agricultural Engineers (ASAE) and referenced by the USEPA (2000) in their Bacteria Indicator Tool, the

daily fecal coliform production rates by livestock species were estimated as follows (ASAE 1998):

- **§** Beef cattle release approximately 1.04E+11 per animal per day
- **§** Dairy cattle release approximately 1.01E+11 per animal per day
- **§** Swine release approximately 1.08E+10 per animal per day
- Chickens release approximately 1.36E+08 per animal per day
- **Sheep release approximately** 1.20E+10 per animal per day
- § Horses release approximately 4.20E+08 per animal per day
- **§** Turkey release approximately 9.30E+07 per animal per day
- **§** Ducks release approximately 2.43E+09 per animal per day
- **§** Geese release approximately 4.90E+10 per animal per day

Using the estimated livestock populations and the fecal coliform production rates from ASAE, an estimate of fecal coliform production from each group of livestock was calculated in Table 3-7 for each watershed of the Study Area. It should be noted that only a fraction of these fecal coliform loading estimates are expected to reach the receiving water, either washed into streams by runoff or by direct deposition from wading animals. Cattle appear to represent the most significant livestock source of fecal bacteria based on overall loading estimates.

Table 3-7: Fecal Coliform Production Estimates for Selected Livestock (x10⁹/day)

Stream Name	Cattle & Calves	Horses & Ponies	Sheep & Lambs	Hogs & Pigs	Ducks	Geese	Chickens	Total
Whiteoak Bayou	4202	4	0	•	0.2	0	0.0	1010
Above Tidal	1303	1	3	3	0.3		0.3	1312

3.2.3 Failing On-site Sewage Facilities

On-site sewage facilities (OSSFs) can be a source of bacteria loading to streams and rivers. Bacteria loading from failing OSSFs can be transported to streams in a variety of ways, including runoff from surface ponding or through groundwater. Indicator bacteria-contaminated groundwater can also be discharged to creeks through springs and seeps.

Over time, most OSSFs operating at full capacity will fail if not properly maintained. OSSF failures are proportional to the adequacy of a state's minimum design criteria (Hall 2002). The 1995 American Housing Survey conducted by the U.S. Census Bureau estimates that, nationwide, 10 percent of occupied homes with OSSFs experience malfunctions during the year (U.S. Census Bureau 1995). A statewide study conducted by Reed, Stowe & Yanke, LLC (2001) reported that approximately 12 percent of the OSSFs in Harris County were chronically malfunctioning. Most studies estimate that the minimum lot size necessary to ensure against contamination is roughly one-half to one acre (Hall 2002). Some studies, however, found that lot sizes in this range or even larger could still cause contamination of ground or surface water (University of Florida 1987). It is estimated that areas with more than 40 OSSFs per square mile

(6.25 septic systems per 100 acres) can be considered to have potential contamination problems (Canter and Knox 1985).

Only permitted OSSF systems are recorded by authorized county or city agents; therefore, it is difficult to estimate the exact number of OSSFs in use in the Study Area. Table 3-8 lists the OSSF totals based on GIS data information provided by H-GAC. Figure 3-4 displays unsewered areas that do not fall under the wastewater service areas and may be expected to have septic systems serving households in these areas.

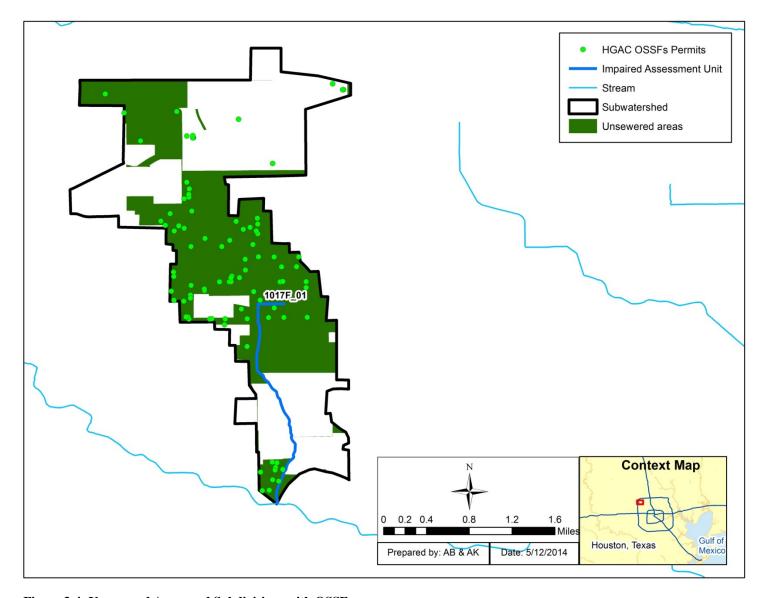


Figure 3-4: Unsewered Areas and Subdivisions with OSSF

3-15 June 2014

For the purpose of estimating fecal coliform loading in watersheds, the OSSF failure rate of 12 percent from the Reed, Stowe & Yanke, LLC (2001) report for Texas Region 4 was used. Using this 12 percent failure rate, calculations were made to characterize fecal coliform loads in each watershed.

Fecal coliform loads were estimated using the following equation (USEPA 2001):

The average of number of people per household was calculated to be 2.75 for the Study Area (U.S. Census Bureau 2010) based on an average household density for Houston, and Jersey Village. Approximately 70 gallons of wastewater were estimated to be produced on average per person per day (Metcalf and Eddy 1991). The fecal coliform concentration in failing septic tank effluent was estimated to be 10⁶ per 100 mL of effluent based on reported concentrations from a number of published reports (Metcalf and Eddy 1991; Canter and Knox 1985; Cogger and Carlile 1984). Using this information, the estimated load from failing septic systems within each subwatershed was calculated and is summarized in Table 3-8. Based on this data, it was determined that the estimated fecal coliform loading from OSSFs in the Study Area were found to be significant and this might be because a considerable area of the Study Area was unsewered.

Table 3-8: Estimated Number of OSSFs per Watershed and Fecal Coliform Load

Segment	Stream Name	OSSF data from H-GAC	# of Failing OSSFs	Estimated Loads from OSSFs (x 10 ⁹ counts/day)
1017F_01	Whiteoak Bayou Above Tidal	98	11.76	85.70

3.2.4 Domestic Pets

Fecal matter from dogs and cats is transported to streams by runoff from urban and suburban areas and can be a potential source of bacteria loading. On average nationally, there are 0.58 dogs per household and 0.66 cats per household (American Veterinary Medical Association 2002). Using the U.S. Census data at the block level (U.S. Census Bureau 2010), dog and cat populations can be estimated for each watershed. Table 3-9 summarizes the estimated number of dogs and cats for the watersheds of the Study Area.

Table 3-9: Estimated Numbers of Pets

Segment			Cats
1017F_01	Whiteoak Bayou Above Tidal	1883	2143

Table 3-10 provides an estimate of the fecal coliform load from pets. These estimates are based on estimated fecal coliform production rates of 5.4×10^8 per day for cats and 3.3×10^9 per

3-16 June 2014

day for dogs (Schueler 2000). Only a small portion of these loads is expected to reach waterbodies, through wash-off of land surfaces and conveyance in runoff.

Table 3-10: Fecal Coliform Daily Production by Pets (x 10⁹)

Segment	Stream Name	Dogs	Cats	Total Load (cfu/day x 10 ⁹)
1017F_01	Whiteoak Bayou Above Tidal	6215	1157	7372

3.2.5 Bacteria Re-growth and Die-off

Bacteria are living organisms that grow and die. Certain enteric bacteria can regrow in organic materials if appropriate conditions prevail (e.g., warm temperature). It has been shown that fecal organisms can regrow from improperly treated effluent during their transport in pipe networks, and they can regrow in organic rich materials such as compost and sludges. While the die-off of indicator bacteria has been demonstrated in natural water systems due to the presence of sunlight and predators, the potential for their regrowth is less well understood. Both processes (regrowth and die-off) are in-stream processes and are not considered in the bacteria source loading estimates of each water body.

CHAPTER 4 TECHNICAL APPROACH AND METHODS

The TMDL represents the maximum amount of a pollutant that the stream can receive in a single day without exceeding the water quality standard. A TMDL is expressed as the sum of three elements as described in the following mathematical equation:

$$TMDL = \Sigma WLA + \Sigma LA + MOS$$

The wasteload allocation (WLA) is the portion of the TMDL allocated to existing and future permitted (point) sources. The load allocation (LA) is the portion of the TMDL allocated to unregulated (nonpoint) sources, including natural background sources. The MOS is intended to account for uncertainty and ensure that standard for contact recreation will be met. Thus, the allowable pollutant load that can be allocated to point and nonpoint sources can then be defined as the TMDL minus the MOS.

40 CFR §130.2(1), states that TMDLs can be expressed in terms of mass per time, toxicity, or other appropriate measures. For *E coli* or enterococci bacteria, TMDLs are expressed as numbers per day, where possible, or as a percent reduction goal, and represent the maximum one day load the stream can assimilate while still attaining the standard for contact recreation. For the Whiteoak Bayou Watershed, to quantify allowable pollutant loads, percent reduction goals to achieve standard for contact recreation and specific TMDL allocations for point and nonpoint sources, two different methods are used: 1) the load duration curve method for non-tidal streams and 2) a mass balance method using a tidal prism for tidal streams. These two different technical approaches are described in this Section.

4.1 Using Load Duration Curves to Develop TMDLs

The TMDL calculations for freshwater streams presented in this report are derived from FDCs and LDCs, which facilitate development of TMDLs. As a TMDL development tool, they can be effective at identifying whether impairments are associated with point or nonpoint sources. The technical approach for using FDCs and LDCs for TMDL development includes the four following steps described in Subsections 4.2 through 4.4 below:

- 1. Preparing flow duration curves (FDC) for gaged and ungaged WQM stations;
- 2. Using the FDCs to identify the critical conditions that will be used to calculate the TMDL;
- 3. Calculate the LDCs from the FDCs.
- 4. Using the LDCs to estimate existing ambient bacteria loading in the receiving water and derive TMDL elements WLA, LA, MOS;
- 5. Using these TMDL elements and ambient loading to estimate percent reduction goals necessary to attain the contact recreation standard.

Historically, in developing WLAs for pollutants from point sources, it was customary to designate a critical low flow condition at which the maximum permissible loading was calculated. As water quality management efforts expanded in scope to quantitatively address nonpoint sources of pollution and types of pollutants, it became clear that this single critical low flow condition was inadequate to ensure suitable water quality across a range of flow conditions. Because the LDC covers a range of flow conditions, use of the LDC obviates the need to

determine a design storm or selected flow recurrence interval with which to characterize the appropriate flow level for the assessment of critical conditions. For waterbodies impacted by both point and nonpoint sources, the "nonpoint source critical condition" would typically occur during high flows, when rainfall runoff would contribute the bulk of the pollutant load, while the "point source critical condition" would typically occur during low flows, when WWTF effluent would dominate the base flow of the impaired water. Because the largest pollutant load occurs during the highest flow conditions, the calculated TMDL is based on them.

LDCs display the maximum allowable load over the complete range of flow conditions by a line using the calculation of flow multiplied by the water quality criterion. Using LDCs, a TMDL can be expressed as a continuous function of flow, or as a discrete value derived from a specific flow condition.

4.2 Development of Flow Duration Curves

Flow duration curves serve as the foundation of LDCs and are graphical representations of the flow characteristics of a stream at a given site. When historical flow data are available, FDCs utilize the hydrologic record from stream gages to forecast future recurrence frequencies. While many WQM stations throughout Texas do not have long term flow data, there are various methods that can be used to estimate flow frequencies at ungaged stations or gaged stations missing flow data.

The most basic method to estimate flows at an ungaged site involves 1) identifying an upstream or downstream flow gage; 2) calculating the contributing drainage areas of the ungaged sites and the flow gage; and 3) calculating daily flows at the ungaged site by using the flow from an acceptable nearby gaged site multiplied by the drainage area ratio. There were two downstream gages (outside the Study Area) located in Whiteoak Bayou, and a complex approach was used to correlate nearby gages that also considers watershed differences in pervious and impervious cover, land cover, WWTF discharges, and the hydrologic properties of the watershed. A more detailed explanation of the methods for estimating flow at ungaged WQM stations is provided in Appendix D.

Flow duration curves are a type of cumulative distribution function. The flow duration curve represents the fraction of flow observations that exceed a given flow at the site of interest. The observed flow values are first ranked from highest to lowest then, for each observation, the percentage of observations exceeding that flow is calculated. The flow value is read from the y-axis, which is typically on a logarithmic scale since the high flows would otherwise overwhelm the low flows. The flow exceedance frequency is read from the x-axis, which is numbered from 0 to 100 percent, and may or may not be logarithmic. The lowest measured flow occurs at an exceedance frequency of 100 percent indicating that flow has equaled or exceeded this value 100 percent of the time, while the highest measured flow is found at an exceedance frequency of 0 percent. The median flow occurs at a flow exceedance frequency of 50 percent.

While the number of observations required to develop a flow duration curve is not rigorously specified, a flow duration curve is usually based on more than 5-years of observations, and encompasses inter-annual and seasonal variation. Ideally, the drought of record and flood of record are included in the observations. For this purpose, the long-term flow gaging stations operated by the USGS are utilized. As previously mentioned, there are no long-term flow data from within the Study Area and therefore, flows were estimated for all WQM stations/watersheds in Whiteoak Bayou using the gage correlation approach described in

Appendix D. Two USGS gages outside the Study Area, Whiteoak Bayou at Alabonson Road, Houston, TX (USGS gage number: 08074020), and Whiteoak Bayou at Houston, TX (USGS gage number: 08074500), were chosen to conduct flow projections. The period of record for flow data used from these stations was 2002 through 2012.

A typical semi-log flow duration curve exhibits a sigmoidal shape, bending upward near a flow exceedance frequency value of 0 percent and downward at a frequency near 100 percent, often with a relatively constant slope in between. For sites that on occasion exhibit no flow, the curve will intersect the abscissa at a frequency less than 100 percent. As the number of observations at a site increases, the line of the FDC tends to appear smoother. However, at extreme low and high flow values, flow duration curves may exhibit a "stair step" effect due to the USGS flow data rounding conventions near the limits of quantitation.

FDCs can be subdivided into hydrologic condition classes to facilitate the diagnostic and analytical uses of flow and LDCs. The hydrologic classification scheme utilized in this application is described in Table 4-1.

Table 4-1: Hydrologic Classification Scheme

Flow Exceedance Percentile	Hydrologic Condition Class
0-30	Wet conditions
30-70	Intermediate flows
70-100	Dry conditions

Figure 4-1 presents the FDC developed for the WQM station in Rolling Fork Creek for calculating the TMDL of the 303(d) listed freshwater stream using the gage correlation method outlined above and further described in Appendix D. The flow exceedance percentiles for these segments are presented in tabular form in Appendix B.

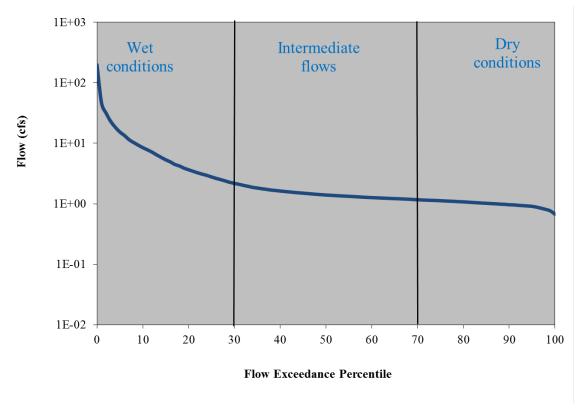


Figure 4-1: Flow Duration Curve for Whiteoak Bayou Above Tidal [Rolling Fork Creek] (1017F_01)

4.3 Estimating Current Point and Nonpoint Loading and Identifying Critical Conditions from Load Duration Curves

Another key step in the use of LDCs for TMDL development is the estimation of existing bacteria loading from point and nonpoint sources and the display of this loading in relation to the TMDL. There were domestic or otherwise continuously discharging point sources (i.e., WWTFs) in the watershed. Therefore, the TMDL was allocated between stormwater wasteload allocation, WWTF wasteload allocation and the load allocation based on the percentage of the watershed covered by MS4 permits.

The critical condition for the load duration curve is considered the flow regime that requires the most significant bacteria reduction to meet water quality standards. For all watersheds of interest, this was the low flow (70-100th percentile flow) conditions.

4.4 Development of Bacteria TMDLs for Freshwater Streams Using Load Duration Curves

The final step of the process involves developing calculations to support development of the TMDL allocations.

Step 1: Generate Bacteria LDCs. LDCs are similar in appearance to flow duration curves; however, the ordinate is expressed in terms of a bacteria load in counts/day. The curve represents the water quality criteria for *E coli* (either single sample criteria of 394 MPN/dL or geometric mean criteria of 126 MPN/dL), expressed in terms of a load through multiplication by the

continuum of flows at the site determined using the gage correlation approach. The basic steps to generating an LDC involve:

- Developing flow estimates using the gage correlation approach described in Appendix D
 and developing flow duration curve as described in previous sections;
- obtaining the water quality data for the WQM station;
- matching the water quality observations with the flow estimates from the same date;
- displaying a curve on a plot that represents the allowable load multiply the actual or estimated flow by the surface water quality standard for each respective indicator;
- multiplying the flow by the water quality parameter concentration to calculate daily loads; then
- plotting the flow exceedance percentiles and the daily observed bacteria load.

The culmination of these steps is expressed in the following formula, which is displayed on the LDC as the TMDL curve:

```
TMDL (counts/day) = criterion * flow (cfs) * unit conversion factor Where: criterion = 126 counts/dL (E coli) and unit conversion factor = 24,465,755 dL/ft3 * seconds/day
```

The flow exceedance frequency (x-value of each point) is obtained by looking up the historical exceedance frequency of the measured or estimated flow; in other words, the percent of historical observations that equal or exceed the measured or estimated flow. Historical observations of bacteria concentration are paired with flow data and are plotted on the LDC. The indicator bacteria load (or the y-value of each point) is calculated by multiplying the indicator bacteria concentration (counts/dL) by the instantaneous flow (cubic feet per second [cfs]) at the same site and time, with appropriate volumetric and time unit conversions. Indicator bacteria loads representing exceedance of water quality criterion fall above the water quality criterion line.

Figure 4-2 provides a schematic representation of where permitted and unregulated sources of pollution occur throughout the entire hydrograph for a typical stream. This figure shows that runoff typically contributes pollutant loads during high flow to mid-ranged flow conditions. However, flows do not always correspond directly to runoff events. For instance, high flows may occur in dry weather and runoff influence may be observed with low or moderate flows.

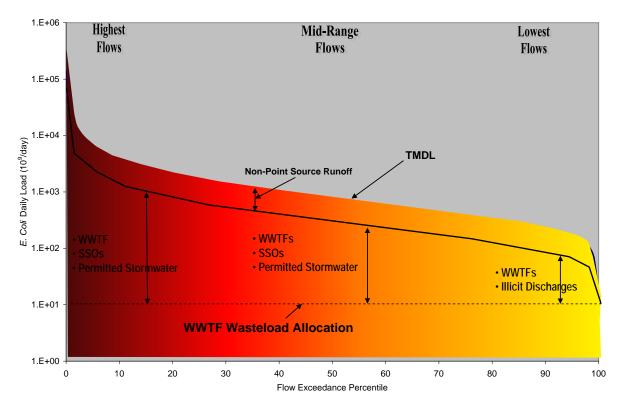


Figure 4-2: Schematic Diagram – Interpreting Sources and Loads

Step 2: Develop LDCs with MOS. The MOS may be defined explicitly or implicitly. An LDC depicting slightly lower estimates than the TMDL is typically developed to incorporate an MOS into the TMDL calculations. A typical explicit approach would reserve some fraction of the TMDL (*e.g.*, 5%) as the MOS. For the TMDLs for freshwater streams in this report, an explicit MOS of 5 percent of the TMDL value (5% of the geometric mean water quality criterion) has been selected. The MOS at any given percent flow exceedance, therefore, is defined as the difference in loading between the TMDL and the TMDL with MOS.

Step 3: Calculate WLA. As previously stated, the pollutant load allocation for permitted (point) sources is defined by the WLA. A point source can be either a wastewater or stormwater permitted discharge. Stormwater point sources are typically associated with urban and industrialized areas, and recent USEPA guidance includes NPDES-permitted stormwater discharges as point source discharges and, therefore, part of the WLA.

The LDC approach recognizes that the assimilative capacity of a waterbody depends on the flow, and that maximum allowable loading will vary with flow condition. TMDLs can be expressed in terms of maximum allowable concentrations, or as different maximum loads allowable under different flow conditions, rather than single maximum load values. This concentration-based approach meets the requirements of 40 CFR, 130.2(i) for expressing TMDLs "in terms of mass per time, toxicity, or other appropriate measures" and is consistent with USEPA's Protocol for Developing Pathogen TMDLs (USEPA 2001).

WLA for WWTF. WLAs may be set to zero for watersheds with no existing or planned permitted point sources. For watersheds with permitted point sources, WLAs may be derived

from TPDES permit limits. In this report, there were four WWTFs in the freshwater segments. Therefore, WLAs were established for WWTFs.

WLA for NPDES/TPDES MS4s. Given the lack of data and the complexity of quantifying bacteria concentrations or loads associated with wet weather events, the percentage of a watershed that is under MS4 jurisdiction is used to estimate the load that should be allocated as the permitted stormwater load. For example, the area of the City of Houston/Harris County permitted MS4 discharges in the project area is estimated to be 2,799 acres, 100 percent of the Rolling Fork Creek (Segment 1017F_01) watershed. Therefore, 100 percent of the wasteload allocation will be designated as the WLA for stormwater.

Step 4: Calculate LA. LAs for unregulated sources (nonpoint sources) can be calculated under different flow conditions as the water quality target load minus the sum of WLA for WWTFs (if any) and permitted stormwater (or MS4). The LA at any particular flow exceedance is calculated as shown in the equation below.

$$LA = TMDL - MOS - \Sigma WLA_{WWTF} - \Sigma WLA_{MS4}$$

Where:

LA = allowable load from unregulated sources

TMDL= total allowable load

 Σ WLA_{WWTF} = sum of all WWTF loads

 Σ WLA _{MS4} = sum of all MS4 loads

MOS = margin of safety

Step 5: Estimate WLA Load Reduction. If there were WWTFs in the segments of interest for this report, the WLA load reduction for TPDES-permitted WWTFs would not be calculated. Instead, it would be assumed that continuous dischargers are adequately regulated under existing permits and, therefore, no WLA reduction would be required. However, for permitted stormwater the load reduction will be the same as the percent reduction goal established for the LA (nonpoint sources).

Step 6: Estimate LA Load Reduction. A percent reduction goal is derived for each WQM station on each segment for the geometric mean criterion. The goal is determined by comparing the TMDL for each of the three flow regimes with the observed geometric mean load for the flow regime.

 $\label{eq:percent_potential} \textit{Percent Reduction Goal} = \textit{ABS}(\textit{Geometric Mean of Indicator Bacteria Load} - \textit{TMDL}) \, / \, \textit{Geometric Mean of Indicator Bacteria Load}$

CHAPTER 5 TMDL CALCULATIONS

5.1 Results of TMDL Calculations

The calculations and results of the TMDLs for the 303(d) listed water bodies in the Study Area are provided in Section 5. The bacteria load allocations derived from the two different technical approaches used for freshwater and tidal water bodies are discussed together in each subsection of Section 5 below.

5.2 Estimated Loading and Critical Conditions

USEPA regulations at 40 CFR 130.7(c) (1) require TMDLs to take into account critical conditions for stream flow, loading, and all applicable water quality standards. To accomplish this, available instream WQM data were evaluated with respect to stream flows, and the magnitude of water quality criteria exceedance. TMDLs are derived for specific indicator bacteria in 303(d) listed water bodies at specific WQM stations based on LDCs for Unnamed Tributary of Mary's Creek (1102G_01) and a mass balance calculation using a tidal prism for tidal streams.

As previously described in Chapter 4, a LDC was used to calculate the bacteria load at the criterion for the freshwater segment over a range of flow conditions. This calculation produces the maximum bacteria load in the stream without exceeding the instantaneous standard over the range of flow conditions.

The pollutant load allocations and percent reduction goals for each flow regime are summarized in Section 5.8. The highest percent reduction goals for the segment were found to occur in the wet flow conditions regime $(0-30^{th})$ percentile) and consequently, this was the flow regime used to estimate the TMDL.

Figure 5-1 represents the LDC for Whiteoak Bayou Above Tidal (1017F_01) based on *E coli* bacteria measurements at sampling location 11157 (Rolling Fork Creek immediately downstream of Lake Lane). The LDC indicates that geometric mean observed *E coli* loading exceeds the TMDL, established using the geometric mean water quality target, under the wet conditions. An 80.5% reduction of the observed loads is required in order to meet the TMDL under the low flow condition.

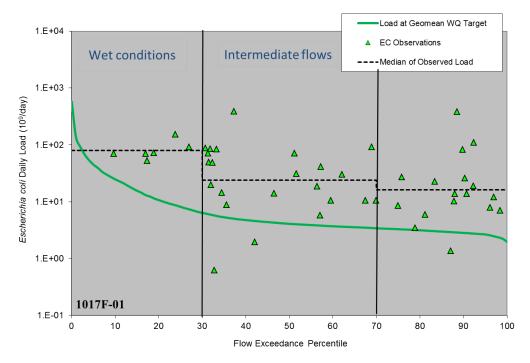


Figure 5-1: Load Duration Curve for Whiteoak Bayou Above Tidal (1017F_01)

5.3 Wasteload Allocation

TPDES-permitted facilities are allocated a daily wasteload calculated as their permitted discharge flow rate multiplied by one half of the instream geometric mean water quality criterion. Table 5-1 summarizes the WLA for the TPDES-permitted facilities within the Study Area. The WWTFs will not be subject to all listed indicator bacteria. The WLA for each facility (WLA_{WWTF}) is derived from the following equation:

```
WLA_{WWTF} = criterion/2 * flow * unit conversion factor (\#/day)
Where:
criterion = 35 \text{ and } 126 \text{ counts/dL for enterococci and E coli, respectively}
flow (10^6 \text{ gal/day}) = permitted flow
unit conversion factor = 37,854,120-10^6 \text{ gal/day}
```

When multiple TPDES facilities occur within a watershed, loads from individual WWTFs are summed and the total load for continuous point sources is included as part of the WLA $_{WWTF}$ component of the TMDL calculation for the corresponding segment. When there are no TPDES WWTFs discharging into the contributing watershed of a WQM station, then WWTF WLA is zero. Compliance with the WLA $_{WWTF}$ will be achieved by adhering to the fecal coliform discharge limits and disinfection requirements of TPDES permits.

Stormwater discharges from MS4 areas are considered permitted point sources. Therefore, the WLA calculations must also include an allocation for permitted stormwater discharges. Given the limited amount of data available and the complexities associated with simulating rainfall runoff and the variability of stormwater loading a simplified approach for estimating the

WLA_{MS4} areas was used in the development of these TMDLs. For the LDC, the percentage of each watershed that is under a TPDES MS4 permit is used to estimate the amount of the overall runoff load that should be dedicated as the permitted stormwater contribution in the WLA_{STORMWATER} component of the TMDL. The difference between the total stormwater runoff load and the portion allocated to WLA _{STORMWATER} constitutes the LA component of the TMDL (direct nonpoint runoff).

TPDES Number	NPDES NUMBER	Facility Name	Final Permitted Flow (MGD)	E coli (counts/day)
13433-001	TX0103705	Heron Lakes WWTP	n/a	n/a
13623-001	TX0109126	West Harris County MUD 21 WWTF	0.12	2.86E+08
12342-001	TX0085821	Maple Leaf Gardens WWTP	0.045	1.07E+08
11188-001	TX0026697	Rolling Fork PUD WWTP	0.49	1.17E+09

Table 5-1: Wasteload Allocations for TPDES-Permitted Facilities

For the freshwater stream, the flow dependent calculations for the MS4 portion of the WLA are derived using LDC and the MS4 percentages provided in Table 3-5.

5.4 Load Allocation

As discussed in Section 3, unregulated sources of bacteria loading to the receiving streams of each waterbody emanate from a number of different sources. The data analyses demonstrate that exceedances at the WQM stations are the result of a variety of nonpoint source loading. The LAs for each stream segment are calculated as the difference between the TMDL, MOS, WLA, and WLA for MS4 as follows:

 $LA = TMDL - \sum WLA_{WWTF} - \sum WLA_{STORMWATER} - MOS$

Where:

LA = allowable load from unregulated sources

TMDL= total allowable load

 Σ WLA_{WWTF} = sum of all WWTF loads

 \sum WLA_{STORMWATER} = sum of all Stormwater loads

MOS = margin of safety

5.5 Seasonal Variability

Federal regulations (40 CFR §130.7(c)(1)) require that TMDLs account for seasonal variation in watershed conditions and pollutant loading. Seasonal variation was accounted for in these TMDLs by using more than 5 years of water quality data and by using the longest period of USGS flow records when estimating flows to develop flow exceedance percentiles.

Though the analysis of the available data for *E coli* in Table 1-10 showed a significance in the data at the monitoring station for warmer and/or cooler months, this cannot be confirmed as

the number of samples was very small. Also, in the Whiteoak Bayou TMDL published in 2008 (texasnetdmr.org/assets/public/waterquality/tmdl/22buffalobayou/22-finalreport_dec06.pdf), a larger area was sampled and it was concluded in that report that there was no difference in *E coli* concentration between the warmer and colder months.

5.6 Allowance for Future Growth

Compliance with these TMDLs is based on keeping the indicator bacteria concentrations in the selected waters below the limits that were set as criteria for the individual sites. Future growth of existing or new point sources is not limited by these TMDLs as long as the sources do not cause indicator bacteria to exceed the limits. The assimilative capacity of streams increases as the amount of flow increases. Increases in flow allow for additional indicator bacteria loads if the concentrations are at or below the contact recreation criterion. The addition of any future wastewater discharge facilities will be evaluated on a case-by-case basis.

To account for the high probability that new additional flows from WWTF may occur in any of the segments, a provision for future growth was included in the TMDL calculations by estimating permitted flows to year 2050 using population projections completed by the Texas Water Development Board. A summary of the methodology used to predict waste water flow capacity based on population growth is included in Appendix E.

5.7 Margin of Safety

Federal regulations (40 CFR §130.7(c)(1)) require that TMDLs include an MOS. The MOS is a conservative measure incorporated into the TMDL equation that accounts for the uncertainty associated with calculating the allowable pollutant loading to ensure geometric mean criterion are attained. USEPA guidance allows for use of implicit or explicit expressions of the MOS, or both. When conservative assumptions are used in development of the TMDL, or conservative factors are used in the calculations, the MOS is implicit. When a specific percentage of the TMDL is set aside to account for uncertainty, then the MOS is considered explicit.

The TMDL for the freshwater segment incorporates an explicit MOS by setting a more stringent target for indicator bacteria loads that is 5 percent lower than the single sample criterion. The explicit margin of safety was used because of the limited amount of data. For contact recreation, this equates to a single sample target of 379 MPN/100mL for *E coli* and a geometric mean target of 120 MPN/100mL. The net effect of the TMDL with MOS is that the assimilative capacity or allowable pollutant loading of each waterbody is slightly reduced. The TMDL for the freshwater stream in this report incorporate an explicit MOS in the LDC by using 95 percent of the single sample criterion. For the tidal segments, the MOS was also explicit. But in this case, the MOS was based on allowable loading, not concentration. After the tidal prism model calculated the total assimilative capacity for enterococci (the TMDL), 5 percent of the allowable load was computed as the MOS.

5.8 TMDL Calculations

The TMDL is computed by multiplying the geomean flow for the highest flow regime by the geomean criterion. This TMDL is then compared to observed loads using LDCs. Finally, it is allocated to various loads as follows.

A TMDL is expressed as the sum of all WLAs (point source loads), LAs (nonpoint source loads), and an appropriate MOS, which attempts to account for uncertainty concerning the relationship between effluent limitations and water quality.

This definition can be expressed by the following equation:

$$TMDL = \Sigma WLA + \Sigma LA + MOS + Future Growth$$

Table 5-2 summarizes the pollutant load allocations and percent reduction goals at current flows, for each flow regime, for the freshwater segments. Table 5-3 summarizes the estimated maximum allowable load of *E coli* for the freshwater assessment unit in this project.

Table 5-2: E coli TMDL Calculations for Whiteoak Bayou Above Tidal (1017F_01)

Station 11157			
Flow Regime %	0%-30%	30%-70%	70%-100%
Geomean Flow ^a , Q (cfs)	5.30	1.40	1.00
TMDL ^b (10^9 org/day)	1.64E+01	4.30E+00	1.61E+00
MOS ^c (10^9 org/day)	8.21E-01	2.15E-01	1.57E-01
Allowable Load at Water Quality Target ^d	1.56E+01	4.08E+00	2.99E+00
Observed Geomean Load ^e (10^9 org/day)	8.01E+01	2.40E+01	1.61E+01
Load Reduction ^f (10^9 org/day)	6.45E+01	1.99E+01	1.31E+01
Load Reduction (%)	80.50%	83.00%	81.40%
TMDL (Qfuture * WQS) (10^9 org/day)	3.04E+02	n/a	n/a

^a Geomean flow = Median flow in wet conditions, intermediate flows, and dry contiditons

Table 5-3: E coli TMDL Summary Calculations for the Non-tidal Segment

Assess- ment Unit	Stream Name	Indicator Bacteria	TMDL ^a (MPN/day)	WLA _{WWTF} (MPN/day)	WLA _{STORMWATE} _R ° (MPN/day)	LA ^d (MPN/day)	MOS ^e (MPN/day)	Future Growth ^f (MPN/day)
1017F_0 1	Whiteoak Bayou Above Tidal	E coli	1.64E+10	1.56E+09	1.40E+10	0.00E+00	8.2E+08	2.05E+09

^a Maximum allowable load for the flow range requiring the highest percent reduction (Table 5-4)

5-5 June 2014

^b TMDL = Contac recreation standard (126 MPN/dL)*median flow*unit conversion factor

 $^{^{}c}MOS = TMDL*0.5$

^d Allowable load at water quality target = TMDL - MOS

^e Observed geomean load = Bacteria load (MPN/dL)*flow*conversion factor

 $[^]f$ Load reduction = Observed geomean load – Allowable load a t water quality target

^b Sum of loads from the WWTF discharging upstream of the TMDL station. Individual loads are calculated as permitted flow * 126/2 (E coli) MPN/100mL*conversion factor (Table 5-3)

^c WLA_{STORMWATER} = (TMDL - MOS - WLA_{WWTF})*(percent of drainage area covered by stormwater permits)

 $^{^{}d}$ LA = TMDL - MOS - WLA _{WWTF} - WLA _{STORMWATER}-Future growth

 $^{^{}e}$ MOS = TMDL x 0.05

f Projected increase in WWTF permitted flows*126/2*conversion factor

CHAPTER 6 PUBLIC PARTICIPATION

To provide focused stakeholder involvement in the Whiteoak Bayou Above Tidal Bacteria TMDL and the implementation phase, a 24 member steering committee was formed. In accordance with House Bill 2912, the group has balanced representation within the watershed and commitment was formalized. TCEQ approved the formation of a Whiteoak Bayou stakeholder group and approved the membership.

The responsibility of each stakeholder on the committee is to communicate project information to others being represented and provide personal/organization perspective on all issues; knowledge of the watershed; comments and suggestions during the project; and solicit input from others. Regular meetings have been held and TCEQ solicits stakeholder comment at each project milestone; and assist stakeholders with communications. H-GAC has assisted TCEQ with the public participation. As contractors to TCEQ, the University of Houston provides technical support and presentations at stakeholder meetings.

CHAPTER 7 REFERENCES

- American Veterinary Medical Association. 2002. U.S. Pet Ownership and Demographics Sourcebook (2002 Edition). Schaumberg, IL.
- ASAE. 1998. American Society of Agricultural Engineers Standards, 45th edition: Standards, Engineering Practices Data. St. Joseph, MI.
- Burian, S. J., Shepherd, J.M. 2005. "Effect of Urbanization on the Diurnal Rainfall Pattern in Houston" Hydrological Processes. 19.5:1089-1103. March 2005.
- Canter, L.W. and R.C. Knox. 1985. Septic tank system effects on ground water quality. Lewis Publishers, Boca Raton, FL.
- Close. 2013. Jason Close, HCFCD, personal communication on August 2013.
- Cogger, C.G. and B.L. Carlile. 1984. Field performance of conventional and alternative septic systems in wet soils. *J. Environ. Qual.* 13 (1).
- Drapcho, C.M. and A.K.B. Hubbs . 2002. Fecal Coliform Concentration in Runoff from Fields with Applied Dairy Manure. http://www.lwrri.lsu.edu/downloads/drapcho Annual% 20report 01.02.pdf
- Dunbar, Larry. 1998. "A Critical Analysis of Flood Control Proposals for Clear Creek." Galveston Bay Conservation and Preservation Association.
- Griffith, Glenn; Sandy Bryce, James Omernik, Anne Rogers. 2007. Ecoregions of Texas. ftp://ftp.epa.gov/wed/ecoregions/tx/TXeco_Jan08_v8_Cmprsd.pdf
- Hall, S. 2002. Washington State Department of Health, Wastewater Management Program Rule Development Committee, Issue Research Report Failing Systems, June 2002.
- HCOEM. 2007. Harris County Office of Emergency Management. http://www.hcoem.org/default2.php
- H-GAC. 2001. "2001 Draft Basin Summary Report" Houston, TX.
- H-GAC. 2005. "Gulf Coast Regional Water Quality Management Plan Update: 2005; Appendix III: Onsite sewer facilities Considerations, Solutions, and Resources." H-GAC, Houston, TX.
- Laird. 2013. Kim Laird, TCEQ, Region 12, personal communication on August 2013.
- Metcalf and Eddy. 1991. Wastewater Engineering: Treatment, Disposal, Reuse: 2nd Edition.
- Montgomery Watson America, Inc. 2000. Regional Surface Water Plant Feasibility Study for Brazoria, Fort Bend, and West Harris Counties. Prepared for the Gulf Coast Water Authority and the Texas Water Development Board, Dickinson and Austin, Texas.
- NOAA. 2011. National Oceanic and Atmospheric Administration, Coastal Services Center. National Land Cover Database 2011. Accessed June 2013 http://www.h-gac.com/rds/gis_data/clearinghouse/
- PRISM Group 2006. Oregon State University, http://www.prismclimate.org, created 12 June 2006.
- Reed, Stowe &Yanke, LLC. 2001. Study to Determine the Magnitude of, and Reasons for, Chronically Malfunctioning On-Site Sewage Facility Systems in Texas. September 2001.
- Schueler, T.R. 2000. Microbes and Urban Watersheds: Concentrations, Sources, and Pathways. In *The Practice of Watershed Protection*, T.R. Schueler and H.K. Holland, eds. Center for Watershed Protection, Ellicott City, MD.
- Soil Survey Division Natural Resources Conservation Service United States Department of

- Agriculture. 1994. "Official Soil Series Descriptions."
- TCEQ. 2010. Texas Surface Water Quality Standards. §307.1-307.10. Adopted by the Commission: June 30, 2010; Effective July 22, 2010 as the state rule. Austin, Texas.
- TCEQ. 2010. April 2010 Update to the Texas Water Quality Management Plan. www.tceq.state.tx.us/nav/eq/eq_wqmp.html
- TCEQ. 2012. Texas Integrated Report of Surface Water Quality for Clean Water Act Sections 305(b) & 303(d) www.tceq.texas.gov/waterquality/assessment/waterquality/assessment/12twqi/twqi12
- TCEQ. 2010. Draft 2010 Guidance for Assessing and Reporting Surface Water Quality in Texas.
- University of Florida. 1987. Institute of Food and Agricultural Sciences, University Of Florida, Florida Cooperative Extension Service, No. 31, December, 1987.
- U.S. Census Bureau. 1995. http://www.census.gov/.
- U.S. Census Bureau. 2000. http://www.census.gov/. (April 21, 2005).
- U.S. Census Bureau. 2010. http://wwww.census.gov
- USDA. 2007. Census of Agriculture, National Agricultural Statistics Service, United States Department of Agriculture. http://www.agcensus.usda.gov/Publications/2007/index.php
- USEPA. 1983. Final Report of the Nationwide Urban Runoff Program. U.S. Environmental Protection Agency, Water Planning Division.
- USEPA. 1986. Ambient Water Quality Criteria for Bacteria January 1986. Office of Water Regulation and Standards. USEPA 44015-84-002.
- USEPA. 2000. Bacterial Indicator Tool User's Guide. Washington, D.C., US EPA: EPA-823-B-01-003.
- USEPA. 2001. Protocol for Developing Pathogen TMDLs. First Edition. Office of Water, USEPA 841-R-00-002.
- USEPA. 2002. Implementation Guidance for Ambient Water Quality Criteria for Bacteria. May 2002 Draft. EPA-823-B-02-003.
- USEPA. 2005. U.S. Environmental Protection Agency, Office of Water. Stormwater Phase II Final Rule. EPA833-F-00-002 Fact Sheet 2.0. December 2005.
- USEPA. 2007. U.S. Environmental Protection Agency, Office of Water. An approach for using Load Duration Curves in the Development of TMDLs. EPA841-B-07-006. August 2007.

APPENDIX A AMBIENT WATER QUALITY BACTERIA DATA – 2007 TO 2012

Table A-1: Ambient water quality E coli data at the monitoring station

Segment	Station ID	Description	Single Sample Criterion	Value	Sample Exceeding	Geometric Mean (MPN/100ml)	Number of Samples	Number of Samples Exceeding Criteria	% of Samples Exceeding	Sampling Date
1017F	11157	EC	399	1000	1000					10/11/2007
1017F	11157	EC	399	420	420					11/28/2007
1017F	11157	EC	399	110						1/3/2008
1017F	11157	EC	399	5700	5700					2/13/2008
1017F	11157	EC	399	3200	3200					3/19/2008
1017F	11157	EC	399	1700	1700					4/9/2008
1017F	11157	EC	399	1300	1300					6/26/2008
1017F	11157	EC	399	750	750					8/14/2008
1017F	11157	EC	399	640	640					10/6/2008
1017F	11157	EC	399	360						10/30/2008
1017F	11157	EC	399	330						12/3/2008
1017F	11157	EC	399	360						1/29/2009
1017F	11157	EC	399	320						3/19/2009
1017F	11157	EC	399	580	580					4/22/2009
1017F	11157	EC	399	890	890					6/30/2009
1017F	11157	EC	399	820	820					7/22/2009
1017F	11157	EC	399	1100	1100					8/19/2009
1017F	11157	EC	399	200						10/21/2009
1017F	11157	EC	399	490	490					11/19/2009
1017F	11157	EC	399	13						1/14/2010
1017F	11157	EC	399	130						2/18/2010
1017F	11157	EC	399	340						3/18/2010

1017F	11157	EC	399	1000	1000					4/22/2010
1017F	11157	EC	399	1700	1700					6/23/2010
1017F	11157	EC	399	390						7/14/2010
1017F	11157	EC	399	980	980					8/25/2010
1017F	11157	EC	399	1000	1000					10/28/2010
1017F	11157	EC	399	400	400					11/23/2010
1017F	11157	EC	399	2100	2100					1/6/2011
1017F	11157	EC	399	51						2/2/2011
1017F	11157	EC	399	420	420					3/2/2011
1017F	11157	EC	399	16000	16000					4/5/2011
1017F	11157	EC	399	2100	2100					6/21/2011
1017F	11157	EC	399	1800	1800					7/20/2011
1017F	11157	EC	399	4800	4800					8/10/2011
1017F	11157	EC	399	580	580					10/17/2011
1017F	11157	EC	399	370						11/14/2011
1017F	11157	EC	399	1400	1400					1/11/2012
1017F	11157	EC	399	310						3/19/2012
1017F	11157	EC	399	230						4/23/2012
1017F	11157	EC	399	370						5/14/2012
1017F	11157	EC	399	1500	1500					6/25/2012
1017F	11157	EC	399	920	920					7/25/2012
1017F	11157	EC	399	180						8/16/2012
1017F	11157	EC	399	9200	9200					10/24/2012
1017F	11157	EC	399	3500	3500	698.75	46	30	65.22%	11/29/2012

APPENDIX B USGS FLOW DATA AND WHITEOAK BAYOU ABOVE TIDAL INSTANTANEOUS FLOW DATA*

Table B-1: Flow exceedance percentile at the USGS gages

GAGE NO.	08074500	08074020
Name	Whiteoak Bayou at Houston, TX	Whiteoak Bayou at Alabonson Rd, Houston, TX
Percentile	8074500	8074020
0	9400	5230
1	2176.6	1010
2	1469.8	648.96
3	1080	477.96
4	855.88	348.24
5	722.35	268.15
6	622.94	215.98
7	534	185
8	476	153
9	428	134
10	388	118
11	355.39	109
12	322	97
13	288.79	90
14	261	82
15	241	74
16	220.28	69
17	200.11	64
18	183	60
19	172	55
20	157.6	51.6
21	148	49
22	139	47
23	129	44
24	120	41.92
25	113.75	40
26	106.58	38
27	101	37
28	95	35
29	91	34

1

^{*} See attached CD for USGS flow data

30	87	32
31	83	31
32	79	30
33	76	29
34	73	29
35	71	28
36	69	27
37	67	27
38	66	26
39	64	26
40	62	25
41	61	25
42	60	24
43	59	24
44	58	23.52
45	56	23
46	55	23
47	55	23
48	54	22
49	53	22
50	52	21.5
51	52	21
52	51	21
53	50	21
54	50	20
55	49	20
56	48	20
57	48	20
58	47	19.14
59	47	19
60	46	19
61	46	19
62	45	19
63	44	19
64	44	18
65	43	18
66	43	18
67	42	18
68	42	18
69	41	18
70	41	18

2

71	41	17
72	40	17
73	40	17
74	39	17
75	39	17
76	39	17
77	38	17
78	38	16
79	38	16
80	37	16
81	37	16
82	37	16
83	36	16
84	36	16
85	35	15
86	35	15
87	34	15
88	34	15
89	34	15
90	33	14
91	33	14
92	32	14
93	32	14
94	31	13
95	31	13
96	30	12
97	29	12
98	27	11
99	22	10
100	18	7.3

^{*}Data from 1/1/2002 - 12/31/2012 was used to create Flow Exceedance Percentile

APPENDIX C DISCHARGE MONITORING REPORTS – 2002-2012*

Table C-1: Discharge monitoring reports (DMRs) of the WWTPs in the Study Area

NPDES NUMBER	TX0103705	TX0109126	TX0085821	TX0026697
TPDES NUMBER	13433-001	13623-001	12342-001	11188-001
Date	DAILY AV (MGD)	DAILY AV (MGD)	DAILY AV (MGD)	DAILY AV (MGD)
1/31/2002	0.01477	0.07	0.04	0.225
2/28/2002	0.01079	0.069	0.017045	0.216
3/31/2002	0.0194	0.086	0.016167	0.216
4/30/2002	0.0152	0.034	0.016277	0.236
5/31/2002	0.0163	0.024	0.016255	0.223
6/30/2002	0.0176	0.033	0.02053	0.23
7/31/2002	0.0198	0.066	0.018517	0.226
8/31/2002	0.0238	0.073	0.015559	0.226
9/30/2002	0.0232	0.044	0.01602	0.23
10/31/2002	0.0313	0.051	0.01881	0.259
11/30/2002	0.0264	0.067	0.0216	0.244
12/31/2002	0.0237	0.072	0.01969	0.229
1/31/2003	0.0235	0.058	0.024909	0.209
2/28/2003	0.0229	0.063	0.0275	0.227
3/31/2003	0.0211	0.057	0.021405	0.213
4/30/2003	0.0214	0.03	0.022955	0.209
5/31/2003	0.0276	0.023	0.016755	0.213
6/30/2003	0.031	0.03	0.021286	0.221
7/31/2003	0.032	0.055	0.017568	0.219
8/31/2003	0.034	0.058	0.020124	0.225
9/30/2003	0.032	0.03	0.020452	0.224
10/31/2003	0.034	0.048	0.020526	0.205
11/30/2003	0.038	0.07	0.0239	0.218
12/31/2003	0.036	0.055	0.018418	0.19
1/31/2004	0.05	0.066	0.023262	0.205
2/29/2004	0.032	0.068	0.024725	0.205
3/31/2004	0.051	0.064	0.023283	0.199
4/30/2004	0.038	0.048	0.020264	0.206
5/31/2004	0.043	0.059	0.025738	0.213
6/30/2004	0.043	0.057	0.026773	0.252
7/31/2004	0.048	0.06	0.023727	0.201
8/31/2004	0.045	0.066	0.016272	0.204

1

9/30/2004	0.047	0.058	0.015523	0.267
10/31/2004	0.05125	0.061	0.01609	0.296
11/30/2004	0.05125	0.081	0.018121	0.367
12/31/2004	0.05125	0.073	0.020152	0.323
1/31/2005	0.0555	0.06	0.017864	0.333
2/28/2005	0.0712	0.061	0.01664	0.309
3/31/2005	0.0712	0.058	0.014478	0.255
4/30/2005	0.0688	0.034	0.017171	0.261
5/31/2005	0.0784	0.034	0.018938	0.25
6/30/2005	0.079	0.042	0.01934	0.236
7/31/2005	0.0867	0.071	0.017357	0.257
8/31/2005	0.0881	0.06	0.021543	0.25
9/30/2005	0.092	0.049	0.01818	0.262
10/31/2005	0.0864	0.049	0.01899	0.249
11/30/2005	0.0911	0.063	0.016571	0.246
12/31/2005	0.0921	0.068	0.015361	0.261
1/31/2006	0.0898	0.069	0.012309	0.251
2/28/2006	0.0871	0.061	0.01688	0.243
3/31/2006	0.0928	0.069	0.013269	0.238
4/30/2006	0.104	0.046	0.016065	0.248
5/31/2006	0.1132	0.043	0.013277	0.325
6/30/2006	0.1262	0.06	0.016436	0.273
7/31/2006	0.1248	0.089	0.01784	0.295
8/31/2006	0.1178	0.097	0.017873	0.271
9/30/2006	0.1319	0.067	0.016685	0.264
10/31/2006	0.1382	0.06	0.017309	0.285
11/30/2006	0.1194	0.074	0.014076	0.245
12/31/2006	0.1257	0.088	0.019	0.259
1/31/2007	0.139	0.09	0.03	0.272
2/28/2007	0.1262	0.078	0.0285	0.21
3/31/2007	0.1511	0.083	0.027	0.204
4/30/2007	0.1377	0.057	0.025	0.196
5/31/2007	0.1431	0.065	0.03	0.223
6/30/2007	0.147	0.096	0.039	0.217
7/31/2007	0.209	0.146	0.043	0.236
8/31/2007	0.154	0.145	0.037	0.218
9/30/2007	0.148	0.093	0.033	0.205
10/31/2007	0.1329	0.068	0.029	0.195
11/30/2007	0.1355	0.036	0.025	0.178
12/31/2007	0.1363	0.056	0.026	0.162
1/31/2008	0.144	0.053	0.027	0.173

2/29/2008	0.1459	0.059	0.0256	0.161
3/31/2008	0.1438	0.055	0.031	0.153
4/30/2008	0.03	0.045	0.025	0.148
5/31/2008	0.1453	0.047	0.0213	0.157
6/30/2008	0.1505	0.069	0.0029	0.163
7/31/2008	0.161	0.07	0.025	0.157
8/31/2008	0.1581	0.058	0.0219	0.173
9/30/2008	0.178	0.043	0.0258	0.224
10/31/2008	0.1514	0.036	0.0257	0.255
11/30/2008	0.1472	0.024	0.0256	0.228
12/31/2008	0.1348	0.027	0.0191	0.205
1/31/2009	0.136	0.034	0.0187	0.199
2/28/2009	0.138	0.037	0.0264	0.199
3/31/2009	0.1445	0.058	0.0278	0.198
4/30/2009	0.1771	0.068	0.0199	0.219
5/31/2009	0.156	0.087	0.029	0.198
6/30/2009	1.32	0.087	0.031	0.196
7/31/2009	0.1513	0.073	0.022	0.195
8/31/2009	0.1522	0.057	0.023	0.188
9/30/2009	0.1485	0.083	0.023	0.196
10/31/2009	0.1606	0.075	0.023	0.239
11/30/2009	0.1411	0.08244	0.018	0.201
12/31/2009	0.1385	0.09839	0.024	0.209
1/31/2010	0.1494	0.097	0.0212	0.19
2/28/2010	0.1466	0.1	0.0211	0.191
3/31/2010	0.1473	0.092	0.0236	0.174
4/30/2010	0.1442	0.074	0.0216	0.178
5/31/2010	0.1596	0.086	0.0203	0.193
6/30/2010	0.1583	0.074	0.021	0.197
7/31/2010	0.1658	0.144	0.0184	0.212
8/31/2010	0.1601	0.086	0.0201	0.18
9/30/2010	0.158	0.063	0.018	0.184
10/31/2010	0.1435	0.042	0.0226	0.162
11/30/2010	0.1439	0.041	0.023	0.187
12/31/2010	0.142	0.04	0.02	0.192
1/31/2011	0.1464	0.082	0.0212	0.197
2/28/2011	0.1394	0.082	0.0231	0.185
3/31/2011	0.1521	0.078	0.0226	0.183
4/30/2011	0.1528	0.066	0.035	0.179
5/31/2011	0.1542	0.059	0.028	0.184
6/30/2011	0.1544	0.066	0.034	0.195

7/31/2011	0.159	0.068	0.073	0.215
8/31/2011	0.1584	0.063	0.029	0.207
9/30/2011	0.1485	0.052	0.032	0.205
10/31/2011	0.1483	0.058	0.047	0.213
11/30/2011	0.1409	0.047	0.077	0.221
12/31/2011	0.1613	0.048	0.059	0.237
1/31/2012	0.1505	0.075	0.082	0.225
2/29/2012	0.157	0.088	0.112	0.24
3/31/2012	0.16	0.072	0.048	0.225
4/30/2012	0.1576	0.066	0.077	0.218
5/31/2012	0.1682	0.068	0.026	0.208
6/30/2012	0.1638	0.054	0.033	0.216
7/31/2012	0.1768	0.045	0.032	0.262
8/31/2012	0.1652	0.052	0.0577	0.219
9/30/2012	0.1633	0.0349	0.022	0.226
10/31/2012	0.1545	0.033	0.026	0.203
11/30/2012	0.1452	0.041	0.025	0.2
12/31/2012	0.1499	0.048	0.022	0.218

Table C-2: Geometric mean concentration of *E coli* and daily load of *E coli*

NPDES Number	TPDES Number	Facility Name	TCEQ Segment Number	Pi pe	Date	Monthl y Averag e Flow (mgd)	Monthly Geometric Mean (cfu/100ml)	Max Concentrati on (cfu/100 ml)	Permitte d Flow (mgd)	EC Daily Load (cfu) =F*G*378541 20	Max Theoretical EC Daily Load (cfu) =I*399*378541 20
TX0103705	13433- 001	HERON LAKES WWTP	1017F	2	4/30/2012	0.1576	28	28	n/a	1.67E+08	n/a
TX0103705	13433- 001	HERON LAKES WWTP	1017F	2	5/31/2012	0.1682	1	1	n/a	6.37E+06	n/a
TX0103705	13433- 001	HERON LAKES WWTP	1017F	2	6/30/2012	0.1638	13	13	n/a	8.06E+07	n/a
TX0103705	13433- 001	HERON LAKES WWTP	1017F	2	7/31/2012	0.1768	41	41	n/a	2.74E+08	n/a
TX0103705	13433- 001	HERON LAKES WWTP	1017F	2	8/31/2012	0.1652	17	17	n/a	1.06E+08	n/a
TX0103705	13433- 001	HERON LAKES WWTP	1017F	2	9/30/2012	0.1633	58	58	n/a	3.59E+08	n/a
TX0103705	13433- 001	HERON LAKES WWTP	1017F	2	10/31/2012	0.1545	<1	<1	n/a	5.85E+06	n/a
TX0103705	13433- 001	HERON LAKES WWTP	1017F	2	11/30/2012	0.1452	<1	<1	n/a	5.50E+06	n/a
TX0103705	13433- 001	HERON LAKES WWTP	1017F	2	12/31/2012	0.1499	921	921	n/a	5.23E+09	n/a
TX0109126	13623- 001	WEST HARRIS CO MUD 21 WWTF	1017F	1	4/30/2012	0.066	<1	<1	0.12	2.50E+06	1.81E+09
TX0109126	13623- 001	WEST HARRIS CO MUD 21 WWTF	1017F	1	5/31/2012	0.068	<1	<1	0.12	2.57E+06	1.81E+09
TX0109126	13623- 001	WEST HARRIS CO MUD 21 WWTF	1017F	1	6/30/2012	0.054	7.5	7.5	0.12	1.53E+07	1.81E+09
TX0109126	13623- 001	WEST HARRIS CO MUD 21 WWTF	1017F	1	7/31/2012	0.045	6.3	6.3	0.12	1.07E+07	1.81E+09
TX0109126	13623- 001	WEST HARRIS CO MUD 21 WWTF	1017F	1	8/31/2012	0.052	3.1	3.1	0.12	6.10E+06	1.81E+09
TX0109126	13623- 001	WEST HARRIS CO MUD 21 WWTF	1017F	1	9/30/2012	0.0349	1	1	0.12	1.32E+06	1.81E+09
TX0109126	13623- 001	WEST HARRIS CO MUD 21 WWTF	1017F	1	10/31/2012	0.033	1	1	0.12	1.25E+06	1.81E+09
TX0109126	13623- 001	WEST HARRIS CO MUD 21 WWTF	1017F	1	11/30/2012	0.041	1	1	0.12	1.55E+06	1.81E+09
TX0109126	13623- 001	WEST HARRIS CO MUD 21 WWTF	1017F	1	12/31/2012	0.048	1	1	0.12	1.82E+06	1.81E+09
TX0085821	12342- 001	MAPLE LEAF GARDENS WWTP	1017F	1	7/31/2012	0.032	Not Received	Not Received	14.6	-	2.21E+11

TX0085821	12342- 001	MAPLE LEAF GARDENS WWTP	1017F	1	10/31/2012	0.022	<1	<1	14.6	8.33E+05	2.21E+11
TX0026697	11188- 001	ROLLING FORK PUD WWTP	1017F	1	4/30/2012	0.218	<1	<1	0.49	8.25E+06	7.40E+09
TX0026697	11188- 001	ROLLING FORK PUD WWTP	1017F	1	5/31/2012	0.208	<1	<1	0.49	7.87E+06	7.40E+09
TX0026697	11188- 001	ROLLING FORK PUD WWTP	1017F	1	6/30/2012	0.216	<1	<1	0.49	8.18E+06	7.40E+09
TX0026697	11188- 001	ROLLING FORK PUD WWTP	1017F	1	7/31/2012	0.262	16	16	0.49	1.59E+08	7.40E+09
TX0026697	11188- 001	ROLLING FORK PUD WWTP	1017F	1	8/31/2012	0.219	<1	<1	0.49	8.29E+06	7.40E+09
TX0026697	11188- 001	ROLLING FORK PUD WWTP	1017F	1	9/30/2012	0.226	<1	<1	0.49	8.56E+06	7.40E+09
TX0026697	11188- 001	ROLLING FORK PUD WWTP	1017F	1	10/31/2012	0.203	<1	<1	0.49	7.68E+06	7.40E+09
TX0026697	11188- 001	ROLLING FORK PUD WWTP	1017F	1	11/30/2012	0.2	<1	<1	0.49	7.57E+06	7.40E+09
TX0026697	11188- 001	ROLLING FORK PUD WWTP	1017F	1	12/31/2012	0.218	<1	<1	0.49	8.25E+06	7.40E+09

APPENDIX D GENERAL METHODS FOR ESTIMATING FLOW AT TMDL WQM STATIONS

APPENDIX D GENERAL METHODS FOR ESTIMATING FLOW AT WQM STATIONS

Because there are no USGS or HCFCD flow gages located in the Whiteoak Bayou Above Tidal Subwatershed, a procedure was developed for estimating historical flows at multiple locations in Whiteoak Bayou. There were two gages available for the Bayou with more than ten years of daily flow data. To support LDC development, ten years of daily flow estimates are needed at the impaired location in the Bayou.

Approach

A statistical model based on historical flows from adjacent gages will be used to estimate flows. The flow records for several adjacent gages appear to be reliable, complete and are highly correlated among one another. These flow time series will be used to derive candidate flow prediction models. Both linear and nonlinear models were tested but ultimately the nonlinear model was selected as the preferred option for developing flow estimates for the Bayou.

Data

Extended periods of daily flow records are available on Whiteoak Bayou at Houston (USGS gage number: 08074500) and Whiteoak Bayou at Alabonson Road (USGS gage number: 08074020). They are adjacent to the Study Area and similar in land use. A comparison of the two gages is provided in Table D-1. In addition, a summary of land cover for each of the gage drainage areas is presented in Table D-2 and compared with the land cover for the Study Area. In addition, a graphical comparison of land cover and gage locations is shown in Figure D-1.

Table D-1: USGS Gages in the area with a Continuous Period of Record from 2002-2012

Gage	Name	Pe	ercent	Drainage Area	Mean Flow	Number of Continuous	
Number	Developed Land Forest/Wetland		(acres)	(cfs)	Data Points		
08074500	Whiteoak Bayou at Houston, TX	91.2%	7.0%	56,241	183.1	4017	
08074020	Whiteoak Bayou at Alabonson Rd, Houston, TX	87.4%	9.1%	23,162	76.6	4017	

Table D-2: Land Cover Summary

	1017F_01			8074020 nage	Gage 08074500 Drainage	
Land cover class	Acres	%	Acres	%	Acres	%
Open Water	18.0	0.64%	93.8	0.41%	129.4	0.23%
Developed, Open Space	595.3	21.27%	4228.2	18.25%	8082.1	14.37%
Developed, Low Intensity	682.1	24.37%	4871.6	21.03%	12710.3	22.60%
Developed, Medium	799.8	28.58%	8392.4	36.23%	20837.5	37.05%

2

Intensity						
Developed, High Intensity	236.2	8.44%	2749.0	11.87%	9669.5	17.19%
Barren Land	6.2	0.22%	82.9	0.36%	104.5	0.19%
Deciduous Forest	151.4	5.41%	811.9	3.51%	1759.6	3.13%
Evergreen Forest	144.3	5.16%	1014.5	4.38%	1520.5	2.70%
Mixed Forest	29.3	1.05%	177.2	0.77%	393.9	0.70%
Shrub/Scrub	39.7	1.42%	182.6	0.79%	226.6	0.40%
Herbaceous	35.3	1.26%	352.5	1.52%	421.9	0.75%
Hay/Pasture	50.0	1.79%	104.1	0.45%	114.3	0.20%
Cultivated Crops	-	-	-	-	1.3	0.00%
Woody Wetlands	10.9	0.39%	102.1	0.44%	269.5	0.48%
Total	2798.6	100.00 %	23162.7	100.00%	56241.0	100.00%
Total Developed	2313.4	82.66%	20241.2	87.39%	51299.4	91.21%
Total Forest/Wetland	335.9	12.00%	2105.7	9.09%	3943.5	7.01%

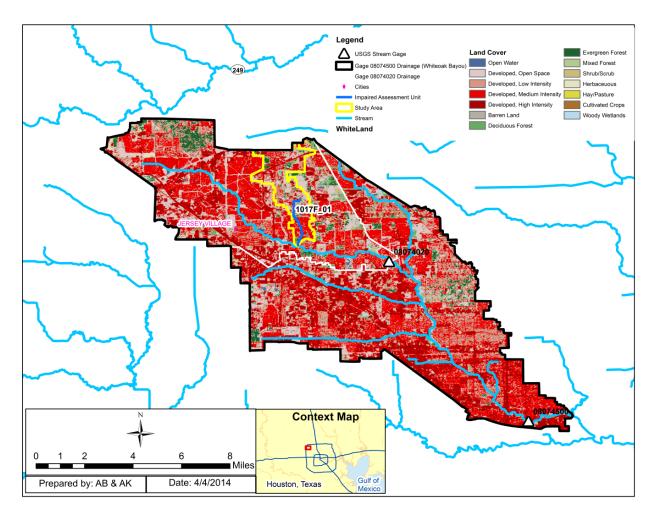


Figure D-1: USGS Gage locations

Model Development

Model form

A model is desired that will reliably predict an unknown flow in one location as a function of known flows from other locations with similar weather and land use. Such models can be linear, nonlinear or autoregressive (Linsley, Kohler and Paulhus 1982). In general, they take take the form:

$$Q_{u,t} = f(Q_{k,t} Q_{k,t-1,...})$$

Where:

Q_{u,t}= unknown flow time series

 $Q_{k,t}$ = known flow time series;

f(x) = linear or exponential function)

In general the time interval of the data is not important so long as the measurements are contemporaneous and equivalently averaged as there is no such thing as a truly instantaneous flow rate. In this case the input and output of the model are average daily flows. An analysis in log space produced significant but lower correlations thus a contemporaneous liner model was selected. Next, the model coefficients were selected based on the following model form.

$$Q_u = Q_k A^x D^y W^z$$

Where:

Q_u= unknown flow

 Q_k = known flow;

A= Drainage area ratio

D= Developed area ratio

W= Wetland/Forest area ratio

x, y, z = parameters

Note there is no constant term because it is assumed that the unknown flow is zero anytime the known flow is zero. This isn't the case because of treatment plant discharges in both the gages but as discussed below, the gage data were adjusted to remove their effect.

Parameter Selection

The model parameters were selected using the following process:

- **§** Reasonable model parameters were selected.
- **§** The 08074020 gage was used as input to the model, and used to compare to the known flows at 08074500.
- **§** Through an iterative process, the model parameters were refined to improve the fit between the two gages.

A total of 27 wastewater treatment plants are located on the flow path of 08074020 gage and 36 on the flow path of 08074500. In order to properly use the USGS gage flows for the gage correlation approach, it was necessary to establish base flows without the plants. This was accomplished as follows:

- **§** The monthly WWTP flows were obtained for each of the plants
- These flows were totaled to come up with a single WWTP flow for each month
- § These flows were subtracted from the USGS gage flows at both gages as shown in equation below.

$$Q_{baseflow} = Q_{USGSgage} - \overset{\circ}{\mathbf{a}} Q_{Avg.MonthlyWWTF}$$

§ When Q_{baseflow} resulted in a negative value, 30% of the USGS flow was used as a representative baseflow. This assumption is based on goodness of fit, best professional judgement and previous studies that showed baseflow is typically 20-40% of typical Houston bayou flows.

Final Model

The final model parameters used to estimate flows in Whiteoak Bayou Above Tidal watershed were as follows:

- X = 1.288
- Y = 0.441
- Z = 0.114

Goodness of Fit

A combination of visual evaluation, minimization of daily mean residuals and root mean square error were used to arrive at the model parameters that provided the best fit across a range of flow conditions.

To demonstrate the fit that was achieved using the above model, an example of the flow duration curve developed based on the USGS gage flow for gage 08074020 compared with the projected flows is presented in Figure D-2. As shown in the Figure, the fit over the entire range of flow conditions is quite good. The model overpredicts a small amount at the very low flow conditions (i.e., less than the 10th percentile). There is also a small amount of overprediction in the high flows, with mid-range flows being slightly underestimated.

The mean residuals achieved for this comparison and root mean square error is presented in Table D-3.

5

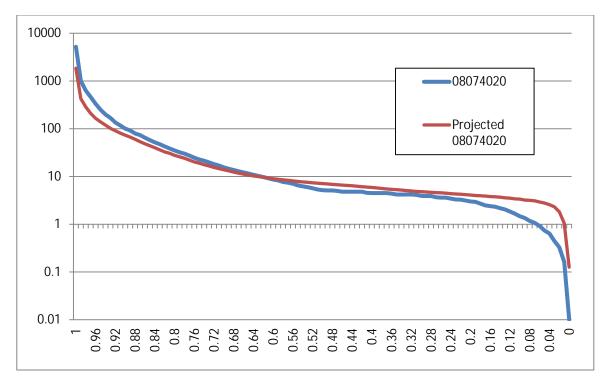


Figure D-2: Gage 08074020 Correlation Model Comparison

Table D-3: Gage Correlation Model Fit

Gage Number	Name	Mean Daily Residuals (cfs)	Root Mean Square Error (cfs)	No. Data Points
08074020	Whiteoak Bayou at Alabonson Rd, Houston, TX	28.66	170.51	4,017

Model application

This approach was used to develop flow duration curves for the Study Area. The flow exceedance tables developed using the gage correlation model (using USGS gages 08074020 and 08074500) are presented in Table D-4.

Table D-4: Flow Exceedance Percentiles (cfs)

Percentile	1017-F
10	0.96
20	1.08
30	1.17
40	1.26
50	1.39
60	1.63
70	2.17
80	3.65
90	8.45
100	197.49

APPENDIX E METHOD FOR ESTIMATING FUTURE WWTF PERMITTED FLOWS

Appendix E - Methodology to Project Permitted Flows for WWTFs Discharging to the Study Area

The methodology used to predict future growth to 2050 is based on the approach used in the Clear Creek TMDL report. This appendix describes the procedure used for the growth prediction.

Municipal Wastewater Projections

Municipal wastewater flow projections are based on the population difference between the 2010 census population and the 2050 population estimate from the Texas Water Development Board Region H Population/Demand Estimates (2013). If a WWTF was located within a city, the population growth for that city was used to project future WWTF flows; otherwise, county population projections were used. Table E-1 presents the population estimates for cities and counties in the Study Area. In the case of the four WWTFs in the Study Area, the only city of interest is the City of Houston.

Table E-1: Summary of Population Estimates for the Study Area

City	2010 U. S. Census Population*	2020 Population Estimate**	2050 Population Estimate**	Percent Increase (2010-2050)
HOUSTON	2,099,451	2,201,986	2,724,216	30%
Jersey Village	7,620	7,723	8,096	6%

^{*}http://censusviewer.com/city/TX/

Next, the per capita permitted flow for each city in the watershed was determined for 2010. To do this, permitted flows were obtained for all WWTFs within the cities. According to the City of Houston "Wastewater Facilities & Maintenance Section" website, the City of Houston treats an average of 277 MGD and is permitted to discharge a total of 564 MGD (2013). This value was used to calculate the per capita flow for the City as shown in Table E-2. Using the calculated per capita flow, the future permitted flow for 2050 was projected and is also included in Table E-3. It should be noted that this estimate is lower than would be expected based on typical wastewater generation estimates per person which is expected since portions of the City are served by non-City of Houston WWTFs. However, this estimate was determined to be acceptable for use in this analysis.

^{**}http://www.twdb.texas.gov/waterplanning/data/projections/2017/doc/Population/PopulationByRW PG/4PopulationH.pdf

Table E-2: Per Capita Flow by City

City	Wastewater generated Per Capita (gallons per day)	Total permitted flow (MGD) - 2010	Total permitted flow (MGD) - 2050
Houston	2.69E+02	564	731.8

For WWTFs within city limits, the amount of the city's flow made up by the facility was determined. In both cases for the WWTFs in the Study Area, the entire WWTF contributing area was within the boundaries of the City of Houston. Therefore, the calculated future permitted flow for each plant is determined as follows:

- § The percentage of City flow is calculated by taking the permitted flow for each plant divided by the current total City permitted flow
- The estimated 2050 Permitted flow is then the percentage of City Flow multiplied by the Total permitted flow for the City of Houston provided in Table E-2.

The results of this analysis are shown in Table E-3.

Table E-3: Summary of Future Permitted Flows by WWTF

TCEQ Permit	Permittee	Location of Outfall	2010 Permitted Flow (MGD)	% of City Flow	Estimated 2050 Permitted Flow (MGD)
TX0103705	Heron Lakes WWTP	City of Houston	n/a	ı	-
TX0109126	West Harris County MUD 21 WWTF	City of Houston	0.12	0.02%	0.16
TX0085821	Maple Leaf Gardens WWTP	City of Houston	0.045	0.01%	0.06
TX0026697	Rolling Fork PUD WWTP	City of Houston	0.49	0.09%	0.64

Summary

A summary of the future growth calculations and resulting value is presented in Table E-4.

Table E-4: Flow Projections

Permit #	Facility	Permitted Flow (MGD)	Receiving Segment	Use Pop Projection from	GPCD ^a	Pop 2050 ^b	% Flow In City ^c	Flow 2050 ^d (MGD)	Adj Flow 2050 ^e (MGD)
13433-001	Heron Lakes WWTP	n/a	1017F_01	City of Houston			ı	-	-
13623-001	West Harris County MUD 21 WWTF	0.12	1017F_01	City of Houston	2.69E+02	2,724,216	0.02%	0.16	0.04
12342-001	Maple Leaf Gardens WWTP	0.045	1017F_01	City of Houston			0.01%	0.06	0.01
11188-001	Rolling Fork PUD WWTP	0.49	1017F_01	City of Houston			0.09%	0.64	0.15

^a From Table E-2

^b From Table E-1

^c Permitted flow for facility/total permitted flow for the city in which the facility is located

 $[^]d$ GPCD*Population 2050*%flow in city

 $[^]eFlow~2050\text{-}Current~permitted~flow$

Table E-5: Projected Flows by Watershed

Segment	Stream Name	Projected Permitted Flow (MGD)
1017F_01	Whiteoak Bayou Above Tidal	0.86