JAMES MIERTSCHIN & ASSOCIATES, INC. **ENVIRONMENTAL ENGINEERING** P.O. BOX 162305 • AUSTIN, TEXAS 78716-2305 • (512) 327-2708 # PRELIMINARY DATA REVIEW **FOR** # LAKE HOUSTON WATERSHED **BACTERIA IMPAIRMENTS** # SAN JACINTO RIVER BASIN | SEGMEN [®] | TS: | |---------------------|------------------------------| | 1002 | LAKE HOUSTON | | 1003 | EAST FORK SAN JACINTO | | 1004 | WEST FORK SAN JACINTO | | 1004D | CRYSTAL CREEK | | 1004E | STEWARTS CREEK | | 1008 | SPRING CREEK | | 1008B | UPPER PANTHER BRANCH | | 1008H | WILLOW CREEK | | 1009 | CYPRESS CREEK | | 1009C | FAULKEY GULLY | 1009D SPRING GULLY 1009E LITTLE CYPRESS CREEK 1010 CANEY CREEK 1011 PEACH CREEK # **Prepared For:** **Texas Commission on Environmental Quality (TCEQ)** Austin, Texas #### **Prepared By:** James Miertschin & Associates, Inc. August 2007 #### JAMES MIERTSCHIN & ASSOCIATES, INC. ENVIRONMENTAL ENGINEERING P.O. Box 162305 • Austin, Texas 78716-2305 • (512) 327-2708 20 August 2007 Mr. Casey Johnson, Project Manager TMDL, Strategic Assessment Division Texas Commission on Environmental Quality Post Office Box 13087 Austin, Texas 78711-3087 RE: Final TMDL Preliminary Data Review Northwest Houston Bacteria Impairments Contract No. 582-7-80171 Work Order No.1 Dear Mr. Johnson: We are submitting a Final TMDL Preliminary Data Review for the subject project. The report describes the compilation of bacteria and flow data for the study segments, determination of impairment, development of preliminary flow duration curves and load duration curves, presentation of land use data, soils data, septic system data, and a tabulation of point sources. This submittal represents a deliverable for Task 2.1 and Task 2.2 of Work Order No. 1. Task 2.2 states that a "summary memorandum" will be prepared to contain the review information and strategy discussion. Due to the voluminous amount of information, we instead prepared a full report to transmit the "review" results conducted under Task 2.1. If you have any questions, please do not hesitate to call me at (512) 327-2708. Yours truly, JAMES MIERTSCHIN & ASSOCIATES, INC. James Miertschin, PE, PhD ### JAMES MIERTSCHIN & ASSOCIATES, INC. ENVIRONMENTAL ENGINEERING P.O. BOX 162305 • AUSTIN, TEXAS 78716-2305 • (512) 327-2708 # PRELIMINARY DATA REVIEW LAKE HOUSTON WATERSHED BACTERIA IMPAIRMENTS CONTRACT NO. 582-7-80171 WORK ORDER NO. 1 # Prepared for: TMDL Program Texas Commission on Environmental Quality Post Office Box 13087 Austin, Texas 78711-3087 Prepared by: **James Miertschin & Associates** August 2007 # TABLE OF CONTENTS | Section | <u>on</u> | <u>Page</u> | |---------|---|-------------| | LIST | OF TABLES | V | | LIST | OF FIGURES | vi | | 1.0 | INTRODUCTION | 1 | | 1.1 | BACKGROUND | 1 | | 1.2 | BASIN-WIDE INFORMATION | 2 | | 2.0 | LAKE HOUSTON, SEGMENT 1002 | 7 | | 2.1 | TCEQ ASSESSMENT FOR 303(d) LIST | 7 | | 2.2 | SUMMARY OF E. COLI DATA BY STATION | | | 2.3 | SPATIAL AND TEMPORAL ANALYSIS | 9 | | 2.4 | LOAD DURATION CURVE DEVELOPMENT | | | 2.4.1 | Flow Duration Curves | | | 2.4.2 | Load Duration Curves | | | 2.5 | DISCUSSION OF POTENTIAL SOURCES | 15 | | 2.5.1 | Upstream Sources | 15 | | 2.5.2 | Runoff Sources | 15 | | 2.5.3 | Wastewater Treatment Facilities | 16 | | 3.0 | EAST FORK SAN JACINTO RIVER, SEGMENT 1003 | 18 | | 3.1 | TCEQ ASSESSMENT FOR 303(d) LIST | 18 | | 3.2 | SUMMARY OF E. COLI DATA BY STATION | | | 3.3 | SPATIAL AND TEMPORAL ANALYSIS | 20 | | 3.4 | LOAD DURATION CURVE DEVELOPMENT | 23 | | 3.4.1 | Flow Duration Curves | 23 | | 3.4.2 | Load Duration Curves | | | 3.5 | DISCUSSION OF POTENTIAL SOURCES | 26 | | 3.5.1 | Upstream Sources | 26 | | 3.5.2 | Runoff Sources | 26 | | 3.5.3 | Wastewater Treatment Facilities | 27 | | 4.0 | WEST FORK SAN JACINTO RIVER, SEGMENT 1004 | 29 | | 4.1 | TCEQ ASSESSMENT FOR 303(d) LIST | 29 | | 4.2 | SUMMARY OF E. COLI DATA BY STATION | 31 | | 4.3 | SPATIAL AND TEMPORAL ANALYSIS | 31 | | 4.4 | LOAD DURATION CURVE DEVELOPMENT | 34 | |-------|------------------------------------|----| | 4.4.1 | Flow Duration Curves | 34 | | 4.4.2 | Load Duration Curves | 35 | | 4.5 | DISCUSSION OF POTENTIAL SOURCES | 37 | | 4.5.1 | Upstream Sources | 38 | | 4.5.2 | Runoff Sources | 38 | | 4.5.3 | Wastewater Treatment Facilities | 39 | | 5.0 | SPRING CREEK, SEGMENT 1008 | 42 | | 5.1 | TCEQ ASSESSMENT FOR 303(d) LIST | | | 5.2 | SUMMARY OF E. COLI DATA BY STATION | | | 5.3 | SPATIAL AND TEMPORAL ANALYSIS | | | 5.4 | LOAD DURATION CURVE DEVELOPMENT | | | 5.4.1 | Flow Duration Curves | | | 5.4.2 | Load Duration Curves | | | 5.5 | DISCUSSION OF POTENTIAL SOURCES | | | 5.5.1 | Upstream Sources | | | 5.5.2 | Runoff Sources | | | 5.5.3 | Wastewater Treatment Facilities | 61 | | 6.0 | CYPRESS CREEK, SEGMENT 1009 | 65 | | 6.1 | TCEQ ASSESSMENT FOR 303(d) LIST | | | 6.2 | SUMMARY OF E. COLI DATA BY STATION | | | 6.3 | SPATIAL AND TEMPORAL ANALYSIS | | | 6.4 | LOAD DURATION CURVE DEVELOPMENT | | | 6.4.1 | Flow Duration Curves | | | 6.4.2 | Load Duration Curves | | | 6.5 | DISCUSSION OF POTENTIAL SOURCES | | | 6.5.1 | Upstream Sources | | | 6.5.2 | Runoff Sources | | | 6.5.3 | Wastewater Treatment Facilities | 81 | | 7.0 | CANEY CREEK, SEGMENT 1010 | 86 | | 7.1 | TCEQ ASSESSMENT FOR 303(d) LIST | | | 7.2 | SUMMARY OF E. COLI DATA BY STATION | | | 7.3 | SPATIAL AND TEMPORAL ANALYSIS | | | 7.4 | LOAD DURATION CURVE DEVELOPMENT | | | 7.4.1 | Flow Duration Curves | | | 7.4.2 | Load Duration Curves | | | 7.5 | DISCUSSION OF POTENTIAL SOURCES | 93 | | 7.5.1 | Upstream Sources | 94 | |-------|---|-----| | 7.5.2 | Runoff Sources | | | 7.5.3 | Wastewater Treatment Facilities | 96 | | 8.0 | PEACH CREEK, SEGMENT 1011 | 98 | | 8.1 | TCEQ ASSESSMENT FOR 303(d) LIST | 98 | | 8.2 | SUMMARY OF E. COLI DATA BY STATION | 100 | | 8.3 | SPATIAL AND TEMPORAL ANALYSIS | 101 | | 8.4 | LOAD DURATION CURVE DEVELOPMENT | 103 | | 8.4.1 | Flow Duration Curves | 103 | | 8.4.2 | Load Duration Curves | 104 | | 8.5 | DISCUSSION OF POTENTIAL SOURCES | 105 | | 8.5.1 | Upstream Sources | 106 | | 8.5.2 | Runoff Sources | | | 8.5.3 | Wastewater Treatment Facilities | 107 | | APPE | NDIX: WASTEWATER TREATMENT FACILITY INVENTORY | 109 | ## LIST OF TABLES | Table 1-1: | Impaired Segments | 1 | |-------------|---|-----| | Table 2-1: | Lake Houston Assessment Units and Results | 7 | | Table 2-2: | Lake Houston, West Fork Arm Sampling Sites | 9 | | Table 2-3: | Lake Houston, West Fork Arm E. coli Data Summary | 9 | | Table 2-4: | Lake Houston Wastewater Treatment Facility Summary | 17 | | Table 3-1: | East Fork Assessment Units and Results | 18 | | Table 3-2: | East Fork Sampling Sites | 20 | | Table 3-3: | East Fork E. coli Data Summary | 20 | | Table 3-4: | East Fork USGS Flow Gages | 23 | | Table 3-5: | East Fork Wastewater Treatment Facility Summary | 28 | | | West Fork Assessment Units and Results | | | Table 4-2: | West Fork Sampling Sites | 31 | | Table 4-3: | West Fork E. coli Data Summary | 31 | | Table 4-4: | West Fork USGS Flow Gages | 34 | | Table 4-5: | West Fork Wastewater Treatment Facility Summary | 40 | | Table 5-1: | Spring Creek Assessment Units and Results | 43 | | Table 5-2: | Spring Creek Sampling Sites | 46 | | Table 5-3a: | Spring Creek E. coli Data Summary | 47 | | Table 5-3b | : Panther Branch E. coli Data Summary | 47 | | Table 5-4: | Spring Creek USGS Flow Gages | 52 | | Table 5-5: | Spring Creek Wastewater Treatment Facility Summary | 62 | | Table 6-1: | Cypress Creek Assessment Units and Results | 65 | | Table 6-2: | Cypress Creek Sampling Sites | 67 | | Table 6-3: | Cypress Creek E. coli Data Summary | 67 | | Table 6-4: | Cypress Creek USGS Flow Gages | 73 | | Table 6-5: | Cypress Creek Wastewater Treatment Facility Summary | 82 | | Table 6-5: | Cypress Creek Wastewater Treatment Facility Summary (continued) | 83 | | Table 7-1: | Caney Creek Assessment Units and Results | 86 | | Table 7-2: | Caney Creek Sampling Sites | 88 | | Table 7-3: | Caney Creek E. coli Data Summary | 88 | | Table 7-4: | Caney Creek USGS Flow Gages | 91 | | Table 7-5: | Caney Creek Wastewater Treatment Facility Summary | 96 | | Table 8-1: | Peach Creek Assessment Units and Results | 98 | | | Peach Creek Sampling Sites | | | Table 3-3: | Peach Creek E. coli Data Summary | 100 | | Table 8-4: | Peach Creek USGS Flow Gages | 103 | | Table 8-5: | Peach Creek Wastewater Treatment Facility Summary | 108 | # LIST OF FIGURES | Figure 1-1: | Segments of Project Study Area | 2 | |-------------|--|----| | Figure 1-2: | Project Area Land Use Data (2001) | 3 | | _ | Project Area Soil Associations | | | Figure 1-4: | Project Area Population Density (1990) | 5 | | | Project Area Population Density (2005) | | | Figure 1-6: | Septic System Density (1990) | 6 | | Figure 1-7: | Percentage of Households Served by Septic Systems (1990) | 6 | | Figure 2-1: | Lake Houston Study Area | 8 | | Figure 2-2: | West Fork Arm Lake Houston Spatial Analysis | 10 | | Figure 2-3: | Temporal Analysis: Lake Houston at US 59 (#11213) | 10 | | Figure 2-4: | Temporal Analysis: Lake Houston Parkway (#18669) | 11 | | Figure 2-5: | Temporal Analysis: Lake Houston at Misty Cove (#18667) | 11 | | Figure 2-6: | Lake Houston Flow Duration Curve | 12 | | Figure 2-3: | LDC for Lake Houston at US 59 (#11213) | 13 | | | LDC for Lake Houston Parkway (#18669) | | | Figure 2-5: | LDC for Lake Houston at Misty Cove (#18667) | 14 | | Figure 2-6: | Lake Houston Land Use | 16 | | Figure 2-7: | Lake Houston Treatment Facility Discharge Locations | 17 | | Figure 3-1: | East Fork Study Area | 19 | | Figure 3-2: | East Fork Spatial Analysis | 21 | | Figure 3-3: | Temporal Analysis: East Fork at SH 150 (#17431) | 21 | | Figure 3-4: | Temporal Analysis: East Fork at US 59 (#14242) | 22 | | | Temporal Analysis: East Fork at FM 1485 (#11235) | | | Figure 3-6: | East Fork Flow
Duration Curves | 23 | | Figure 3-7: | LDC for East Fork at SH 150 (#17431) | 24 | | Figure 3-8: | LDC for East Fork at US 59 (#14242) | 25 | | | LDC for East Fork at FM 1485 (#11235) | | | | : East Fork Land Use | | | Figure 3-11 | : East Fork Treatment Facility Discharge Locations | 28 | | Figure 4-1: | West Fork Study Area | 30 | | _ | West Fork Spatial Analysis | | | Figure 4-3: | Temporal Analysis: West Fork at SH 242 (#16624) | 32 | | Figure 4-4: | Temporal Analysis: Stewarts Creek (#16626) | 33 | | _ | Temporal Analysis: Crystal Creek (#16635) | | | _ | West Fork Flow Duration Curves | | | | LDC for West Fork at SH 242 (#16624) | | | • | LDC for Stewarts Creek (#16626) | | | Figure 4-9: | LDC for Crystal Creek (#16635) | 37 | | Figure 4-10: West Fork Land Use | 39 | |---|-----| | Figure 4-11: West Fork Treatment Facility Discharge Locations | 41 | | Figure 5-1a: Spring Creek Study Area | 44 | | Figure 5-1b: Panther Branch Study Area | 45 | | Figure 5-2a: Spring Creek Spatial Analysis | 48 | | Figure 5-2b: Panther Branch Spatial Analysis | 48 | | Figure 5-3: Temporal Analysis: Spring Crk at Rosehill Rd (#11323) | 49 | | Figure 5-4: Temporal Analysis: Spring Crk at SH 249 (#11314) | 49 | | Figure 5-5: Temporal Analysis: Spring Crk at Kuykendahl Rd (#17489) | 50 | | Figure 5-6: Temporal Analysis: Spring Crk at IH 45 (#11313) | 50 | | Figure 5-7: Temporal Analysis: Spring Crk at Riley Fuzzel Rd (#11312) | 51 | | Figure 5-8: Temporal Analysis: Willow Crk at Rosling Rd (#11185) | 51 | | Figure 5-9: Spring Creek Flow Duration Curves | 53 | | Figure 5-10: LDC for Spring Crk at Rosehill Rd (#11323) | 54 | | Figure 5-11: LDC for Spring Crk at SH 249 (#11314) | 55 | | Figure 5-12: LDC for Spring Crk at Kuykendahl Rd (#17489) | 55 | | Figure 5-13: LDC for Spring Crk at IH 45 (#11313) | | | Figure 5-14: LDC for Spring Crk at Riley Fuzzel Rd (#11312) | 56 | | Figure 5-15: LDC for Willow Crk at Rosling Rd (#11185) | 57 | | Figure 5-16: LDC for Upper Panther Branch (#16629-30) | 57 | | Figure 5-17: LDC for Bear Branch (#16631) | | | Figure 5-18: LDC for Lake Woodlands (#16481-84) | 58 | | Figure 5-19: LDC for Lower Panther Branch (#16627-28) | 59 | | Figure 5-20: Spring Creek Land Use | 61 | | Figure 5-21a: Spring Creek Treatment Facility Discharge Locations East | 63 | | Figure 5-21b: Spring Creek Treatment Facility Discharge Locations West | 64 | | Figure 6-1: Cypress Creek Study Area | 66 | | Figure 6-2: Cypress Creek Spatial Analysis | 68 | | Figure 6-3: Temporal Analysis: Cypress Creek at Hahl Road (#11333) | 69 | | Figure 6-4: Temporal Analysis: Cypress Creek at Grant Road (#11332) | 69 | | Figure 6-5: Temporal Analysis: Cypress Creek at SH 249 (#11331) | 69 | | Figure 6-6: Temporal Analysis: Cypress Creek at Steubner-Airline Road (#11330) | 70 | | Figure 6-7: Temporal Analysis: Cypress Creek at at IH 45 (#11328) | 70 | | Figure 6-8: Temporal Analysis: Cypress Creek at Cypresswood Drive (#11324) | 71 | | Figure 6-9: Temporal Analysis: Little Cypress Creek at Kluge Road (#14159) | 71 | | Figure 6-10: Temporal Analysis: Faulkey Gully at Lakewood Forest Drive (#17496) . | 72 | | Figure 6-11: Temporal Analysis: 17481 Spring Gully at Spring Crk Oaks Rd (#17481 |)72 | | Figure 6-12: Cypress Creek Flow Duration Curves | | | Figure 6-13: LDC for Cypress Creek at Hahl Road (#11333) | 75 | | Figure 6-14: LDC for Cypress Creek at Grant Road (#11332) | | | Figure 6-15: LDC for Cypress Creek at SH 249 (#11331) | 76 | | Figure 6-16: LDC for Cypress Creek at Steubner-Airline Road (#11330) | 77 | |--|-----| | Figure 6-17: LDC for Cypress Creek at IH 45 (#11328) | 77 | | Figure 6-18: LDC for Cypress Creek at Cypresswood Drive (#11324) | 78 | | Figure 6-19: LDC for Little Cypress Creek at Kluge Road (#14159) | | | Figure 6-20: LDC for Faulkey Gully at Lakewood Forest Drive (#17496) | 79 | | Figure 6-21: LDC for Spring Gully at Spring Creek Oaks Road (#17481) | 79 | | Figure 6-23: Cypress Creek Land Use | 81 | | Figure 6-24a: Cypress Creek Treatment Facility Discharge Locations East | 84 | | Figure 6-24b: Cypress Creek Treatment Facility Discharge Locations West | 85 | | Figure 7-1: Caney Creek Study Area | 87 | | Figure 7-2: Caney Creek Spatial Analysis | 89 | | Figure 7-3: Temporal Analysis: Caney Creek at SH 105 (#14241) | 89 | | Figure 7-4: Temporal Analysis: Caney Creek at FM 1485 (#11334) | 90 | | Figure 7-5: Caney Creek Flow Duration Curve | 91 | | Figure 7-6: LDC for Caney Creek at SH 105 (#14241) | 92 | | Figure 7-7: LDC for Caney Creek at FM 1485 (#11334) | 93 | | Figure 7-9: Caney Creek Land Use | 95 | | Figure 7-10: Caney Creek Treatment Facility Discharge Locations | 97 | | Figure 8-1: Peach Creek Study Area | 99 | | Figure 8-2: Peach Creek Spatial Analysis | 101 | | Figure 8-3: Temporal Analysis: Peach Creek at Old Highway 105 (#16625) | 102 | | Figure 8-4: Temporal Analysis: Peach Creek at FM 1485 (#11336) | 102 | | Figure 8-5: Peach Creek Flow Duration Curve | 103 | | Figure 8-6: LDC for Peach Creek at Old Highway 105 (#16625) | 104 | | Figure 8-7: LDC for Peach Creek at FM 1485 and Foot Bridge (#11336, 17746) | 105 | | Figure 8-8: Peach Creek Land Use | 107 | | Figure 8-9: Peach Creek Treatment Facility Discharge Locations | 108 | #### 1.0 INTRODUCTION #### 1.1 BACKGROUND Several stream segments of the San Jacinto River Basin above Lake Houston have been identified as impaired due to high bacteria levels that exceed state criteria for contact recreation. The Texas Commission on Environmental Quality (TCEQ) has included these segments on the 303(d) List under Category 5a, meaning that a TMDL can be scheduled immediately, and Category 5c, meaning that additional data will be collected before a TMDL is scheduled. A complete list of the impaired segments addressed in this report is provided in Table 1-1. Table 1-1: Impaired Segments | | dote i i. impanea begin | CIICS | |-------------------|-------------------------|--------------------| | Segment
Number | Segment Name | 303(d)
Category | | 1002 | Lake Houston | 5a | | 1003 | East Fork San Jacinto | 5a | | 1004 | West Fork San Jacinto | 5a | | 1004D | Crystal Creek | 5a | | 1004E | Stewarts Creek | 5a | | 1008 | Spring Creek | 5a | | 1008B | Upper Panther Branch | 5a | | 1008H | Willow Creek | 5a | | 1009 | Cypress Creek | 5a | | 1009C | Faulkey Gully | 5c | | 1009D | Spring Gully | 5c | | 1009E | Little Cypress Creek | 5a | | 1010 | Caney Creek | 5a | | 1011 | Peach Creek | 5a | This report provides a preliminary assessment of the *E. coli* bacteria data available for each of these impaired segments. This report is organized by the primary segments shown in bold. Subsegments, which include the alphabetic suffix, are included in the report sections corresponding to their primary segments. Figure 1-1 shows the locations of the primary segments. Figure 1-1: Segments of Project Study Area #### 1.2 BASIN-WIDE INFORMATION This section includes land-use, soils, population, and waste-disposal data for the entire study area. The land use data are shown in Figure 1-2. These data are from the 2001 National Land Cover Database developed by the USGS. Land use data are discussed in more detail, on a segment-by-segment basis in the following sections of this report. Soils data are presented in Figure 1-3. These data were retrieved from the NRCS Soils Website (http://soils.usda.gov/) and represent the most current soil classifications available. Figure 1-3 shows the various soil associations present in the study area. The figure is color-coded based on the soil textures common t the soils in these associations. Population data for 1990 and 2005 are shown in Figures 1-4 and 1-5, respectively. The data shown are from the US Census Bureau. From these figures, it is clear that significant development has occurred in parts of the watershed. Waste-disposal data are presented in Figures 1-6 and 1-7. These data are from the 1990 U.S. Census which included a question regarding the means of household sewage disposal. The available responses to this question were "public sewer", "septic tank or cesspool", and "other means." The vast majority of responses fell within the first two categories. Unfortunately, this question was not posed in the 2000 Census. Because of the age of this information and because of the rapid development occurring in parts of the study area, these data should be interpreted with caution. Figure 1-2: Project Area Land Use Data (2001) Figure 1-3: Project Area Soil Associations Figure 1-4: Project Area Population Density (1990) Figure 1-5: Project Area Population Density (2005) Figure 1-6: Septic System Density (1990) Figure 1-7: Percentage of Households Served by Septic Systems (1990) #### 2.0 LAKE HOUSTON, SEGMENT 1002 #### 2.1 TCEQ ASSESSMENT FOR 303(d) LIST When determining compliance with state water quality criteria, TCEQ often divides segments into various assessment units (AU) to refine the spatial resolution of the impairment. Assessment units for Lake Houston are shown in Table 2-1. The information included in Table 2-1 is from the *Draft 2006 Texas Water Quality Inventory*, which was used as a basis for the *Draft 2006 Texas 303(d) List* (TCEQ, 2007). The period of record used by TCEQ in this assessment was 1 December 1999 through 30 November 2004. The "# Exceed" column provides the number of samples that exceeded the grab sample criterion for *E. coli* (394 org/100mL). Generally, TCEQ allows up to 25% of the samples to exceed the grab sample criterion before considering the reach impaired. The "Geo. Mean" column provides the geometric mean of the *E. coli* samples. If this number exceeds the criterion of 126 org/100mL, then the reach is considered impaired. As shown, only one of the assessment units was found to be impaired for *E. coli*. Table 2-1: Lake Houston Assessment Units and Results |
Assessment
Unit | Segment Name | Assessment Unit Description | #
Samples | #
Exceed | Geo.
Mean | Impaired | |--------------------|--------------|--|--------------|-------------|--------------|----------| | 1002_01 | Lake Houston | Confluence with Red Gully to
FM 1960 East Pass | 372 | 41 | 41 | No | | 1002_02 | Lake Houston | West Lake Houston Parkway
to FM 1960 West Pass | 695 | 117 | 57 | No | | 1002_03 | Lake Houston | FM 1960 to Missouri Pacific
Railroad | 51 | 6 | 53 | No | | 1002_04 | Lake Houston | Missouri Pacific Railroad to
Foley Road | 51 | 13 | 72 | No | | 1002_05 | Lake Houston | From Foley Road to Dam | 291 | 75 | 58 | No | | 1002_06 | Lake Houston | Confluence with Spring Creek
to West Lake Houston Pkwy | 173 | 55 | 182 | Yes | | 1002_07 | Lake Houston | Confluence with East Fork San Jacinto River to confluence with Red Gully | 51 | 7 | 54 | No | The location of the impaired assessment unit (1002_06) and surrounding area is displayed in Figure 2-1. Also shown in this figure are water quality sampling locations where *E. coli* data have been regularly collected. Generally, each assessment unit corresponds to one or more sampling sites. The impaired assessment unit (1002_06) corresponds only to sampling station 11213. Station 18669, at Lake Houston Parkway, is part of assessment unit 1002_02, which also includes Stations 18667 and 11211. Figure 2-1: Lake Houston Study Area #### 2.2 SUMMARY OF E. COLI DATA BY STATION With very few exceptions, *E. coli* sampling did not begin until 2000. (Before 2000, samples were only analyzed for fecal coliform.) Table 2-2 provides an inventory of active *E. coli* sampling sites in the West Fork arm of the reservoir, and Table 2-3 provides a summary of the currently available *E. coli* data for these sites. Table values in bold are indicative of exceedances of state criteria. It is important to note that the data in this table typically cover a longer period of record than that used in the *Draft 2006 Texas Water Quality Inventory*. | Table 2-2: | Lake Houston. | West Fork Arm Sampling Sites | |------------|---------------|------------------------------| | | | | | TCEQ# | TCEQ Description | |-------|--| | 11213 | LAKE HOUSTON WEST FORK SAN JACINTO ARM AT US 59 392
METERS SOUTH AND 71 METERS WEST OF INTERSECTION OF
HAMBLEN ROAD AND US 59 | | 18669 | LAKE HOUSTON/WEST FORK SAN JACINTO RIVER AT
NORTHBOUND/DOWNSTREAM W LAKE HOUSTON PKWY BRIDGE
380 M FROM INTERSECTION WITH KINGWOOD GREENS DR | | 18667 | LAKE HOUSTON IN THE WEST FORK SAN JACINTO RIVER
CHANNEL 270 M EAST AND 60 M NORTH OF MISTY COVE AT
ATASCOCITA PLACE DR | Table 2-3: Lake Houston, West Fork Arm E. coli Data Summary | Station | 11213 | 18669 | 18667 | |-----------------|--------|--------|--------| | Reach | WF Arm | WF Arm | WF Arm | | Begin Date | Jun-00 | Dec-01 | Jun-00 | | End Date | Jun-06 | May-05 | May-05 | | Count | 192 | 278 | 57 | | 75th Percentile | 689 | 385 | 436 | | Geometric mean | 211 | 102 | 92 | | 25th Percentile | 40 | 27 | 20 | #### 2.3 SPATIAL AND TEMPORAL ANALYSIS Spatial analysis can be helpful when attempting to locate sources of bacteria. Figure 2-2 shows the variation in bacteria concentrations from upstream to downstream across the watershed. As shown, the bacteria concentrations are highest at the most upstream station, and significantly lower at the two downstream station. The large drop in bacteria levels between the first two stations is probably due to natural bacteria die-off, resulting from the long travel time between stations. Temporal analysis can be useful for determining the emergence or diminution of bacteria sources over time. Figures 2-3, 2-4, and 2-5 present bacteria concentration over time for each of the three stations included in Table 2-3. For these stations, no significant temporal trends were observed. However, it was noted (particularly at Station 18669) that bacteria concentrations appear to be higher during the winter season than the summer. Figure 2-2: West Fork Arm Lake Houston Spatial Analysis Figure 2-3: Temporal Analysis: Lake Houston at US 59 (#11213) Figure 2-4: Temporal Analysis: Lake Houston Parkway (#18669) Figure 2-5: Temporal Analysis: Lake Houston at Misty Cove (#18667) #### 2.4 LOAD DURATION CURVE DEVELOPMENT #### 2.4.1 Flow Duration Curves A flow duration curve (FDC) is a graph of daily average streamflow versus the percent of days that the average streamflow value is exceeded. FDCs are typically developed using daily flow data collected at USGS gaging stations. However, there are no flow gages in the West Fork Arm of Lake Houston. Instead, flow was estimated by summing the flows from the West Fork San Jacinto River, Spring Creek, and Cypress Creek. These flows were determined from USGS gages 8068090, 8068500, and 8069000, respectively, using appropriate drainage area adjustments. Additional description of these gages is provided in report sections corresponding to the segments the gages are located within. The synthesized flow duration curve for the West Fork Arm of the reservoir is shown in Figure 2-6. Figure 2-6: Lake Houston Flow Duration Curve #### 2.4.2 Load Duration Curves This section presents load duration curves for various water quality sampling stations throughout the study area. The bacterial loads are the product of each grab sample bacteria concentration and the corresponding mean daily streamflow rate. Bacteria standards are represented in these figures by curves for the geometric mean and grab sample criteria, 126 org/100mL and 394 org/100mL, respectively. Load duration curves are presented from upstream to downstream. An LDC for Lake Houston at US Highway 59 is presented in Figure 2-3. At this station, the greatest exceedances typically occur under high flow conditions (0-20th percentile), but exceedances are also common at lower flows. An LDC for Lake Houston at Lake Houston Parkway is presented in Figure 2-4. As with the previous station, the greatest exceedances typically occur under high flow conditions. However, under low flows, bacteria levels appear to meet state criteria, probably as a result of longer residence times that allow more opportunity for the natural die-off of bacteria. A LDC for Lake Houston at Misty Cove is presented in Figure 2-5. Bacteria loads at this station appear similar to the previous station. Figure 2-3: LDC for Lake Houston at US 59 (#11213) Figure 2-4: LDC for Lake Houston Parkway (#18669) Figure 2-5: LDC for Lake Houston at Misty Cove (#18667) #### 2.5 DISCUSSION OF POTENTIAL SOURCES There have historically been two general classifications of sources of pollutants that were distinguished by the mechanism of release to a receiving stream. Sources that were released via a pipe or defined outfall were labeled as "point sources", while sources that were diffuse in nature were labeled as "nonpoint sources". Thus, "point sources" of bacteria would usually include facilities such as wastewater treatment plants. Traditional "nonpoint sources" would include, but not be limited to, leaking sewer systems, failing septic systems, pets, wildlife, livestock, and general urban and rural runoff. However, TMDLs do not always adhere to the traditional usage of the terms point source and nonpoint source. In accordance with EPA guidance, TMDLs are developed to establish two categories of allocations: wasteload allocations (WLAs) and load allocations (LA). EPA has determined that any source flowing into a waterway and covered by a permit should be classified as a waste load and be included in the WLA category. Thus, the "waste load" category would include not only facilities such as wastewater treatment plants, but also discharges of runoff from municipal areas covered under stormwater permits (MS4s). Remaining diffuse sources of pollutants that are not covered by permit are defined as "loads" and ultimately are subject to development of the LA. This would include runoff from rural or urban areas outside of permitting jurisdictions. #### 2.5.1 Upstream Sources Water quality in the West Fork Arm of Lake Houston is dominated by inflows from the West Fork San Jacinto River and its tributaries (including Spring and Cypress Creeks). It is possible that if bacteria levels in these upstream segments are reduced, then bacteria levels in the West Fork Arm of Lake Houston will also decline. #### 2.5.2 Runoff Sources Runoff sources of bacteria can fall into either the waste load or load category, depending on the presence or absence of a permit allowing for discharge into a waterway. Runoff sources of bacteria can be anticipated based on land use. For example, it has been observed that natural areas typically produce the smallest runoff source loads. This is because they tend to produce the least runoff volume and tend to have the lowest density of fecal sources. Rural (farm and ranch) areas also tend to have smaller source loads for the same reasons. However, in both natural and rural areas, significant bacteria sources can still sometimes exist. For example, natural areas could include dense waterfowl areas, and rural areas could include confined animal pens. Urban areas tend to produce larger bacteria loads. This is generally the result of high impervious cover, which increases the frequency and intensity of runoff events. It can also be the result of an increasing density in potential sources (leaking sewage collection systems, failing septic drainfields, pets, wildlife, etc.). Land uses in the watershed surrounding Lake Houston are shown in Figure 2-6. As shown, the watershed surrounding the impairment is comprised primarily of developed land, forest, and wetlands. The source of the data is USGS, 2001. Figure 2-6: Lake Houston Land Use #### **2.5.3**
Wastewater Treatment Facilities Wastewater treatment plants have the potential to contribute significant bacteria loads if complete disinfection is not achieved. These loads may be most noticeable under low flow conditions, during which some streams may be effluent dominated. However, it is also possible for treatment plants to contribute significant loads under wet weather conditions. This could be the case if increased loading due to stormwater inflow and infiltration results in poorer plant performance. For reference, wastewater treatment discharges in the Lake Houston watershed are shown in Table 2-4. However, it should be noted that all of these facilities are located downstream of the impaired monitoring location at US Highway 59, and are therefore not a cause of the impairment. Treatment plant locations are shown in Figure 2-7. It should also be noted that there are numerous treatment plants located in the watersheds of the major tributaries, especially Spring Creek and Cypress Creek. Table 2-4 includes the permitted flow, estimated current flow, and disinfection monitoring requirements for each facility. Facilities without monitoring requirements for disinfection (marked "N") are typically facilities without a significant potential bacteria source (i.e. industries or drinking water treatment plants). Table 2-4: Lake Houston Wastewater Treatment Facility Summary | TCEQ Permit | EPA Permit | | | Permitted | Current | Disinfection | |-------------|------------|-------------------------|------------|------------|------------|--------------| | Number | Number | Name | County | Flow (MGD) | Flow (MGD) | Monitoring | | 02642-000 | TX0093483 | PWT Enterprises, Inc. | Montgomery | 0.003 | 0.0007 | N | | 10495-146 | TX0066583 | City of Houston | Harris | 6.6 | 5.1 | F | | 10495-149 | TX0115924 | City of Houston | Harris | 0.95 | 0.39 | F | | 12242-001 | TX0084042 | Porter MUD | Montgomery | 1.6 | 0.49 | С | | 13526-001 | TX0105996 | Kings Manor MUD | Harris | 0.4 | 0.22 | С | | 14650-001 | TX0128244 | Pulte Homes of Texas LP | Harris | 0.45 | 0 | С | C=chlorine residual, F=fecal coliform, N=none, unk=unknown Figure 2-7: Lake Houston Treatment Facility Discharge Locations #### 3.0 EAST FORK SAN JACINTO RIVER, SEGMENT 1003 #### 3.1 TCEQ ASSESSMENT FOR 303(d) LIST When determining compliance with state water quality criteria, TCEQ often divides segments into various assessment units (AU) to refine the spatial resolution of the impairment. Assessment units for the East Fork of the San Jacinto River are shown in Table 3-1. The information included in Table 3-1 is from the *Draft 2006 Texas Water Quality Inventory*, which was used as a basis for the *Draft 2006 Texas 303(d) List* (TCEQ, 2007). The period of record used by TCEQ in this assessment was 1 December 1999 through 30 November 2004. The "# Exceed" column provides the number of samples that exceeded the grab sample criterion for *E. coli* (394 org/100mL). Generally, TCEQ allows up to 25% of the samples to exceed the grab sample criterion before considering the reach impaired. The "Geo. Mean" column provides the geometric mean of the *E. coli* samples. If this number exceeds the criterion of 126 org/100mL, then the reach is considered impaired. As shown, all three of the assessment units were found to be impaired for *E. coli*. Table 3-1: East Fork Assessment Units and Results | Assessment
Unit | Segment Name | Assessment Unit Description | #
Samples | #
Exceed | Geo.
Mean | Impaired | |--------------------|--------------------------------|--|--------------|-------------|--------------|----------| | 1003_01 | East Fork San Jacinto
River | Confluence with Caney
Creek upstream to US 59 | 77 | 18 | 183 | Yes | | 1003_02 | East Fork San Jacinto
River | US Hwy 59 to 25 miles
upstream (just upstream of
Clear Creek confluence) | 36 | 10 | 189 | Yes | | 1003_03 | East Fork San Jacinto
River | 25 miles upstream of US 59
to US 190 (upper segment
boundary) | 11 | 3 | 197 | Yes | The locations of the assessment units are displayed in Figure 3-1. Also shown in this figure are water quality sampling locations where *E. coli* data have been regularly collected. Generally, each assessment unit corresponds to one or more sampling sites. Figure 3-1: East Fork Study Area #### 3.2 SUMMARY OF E. COLI DATA BY STATION With very few exceptions, *E. coli* sampling did not begin until 2000. (Before 2000, samples were only analyzed for fecal coliform.) Table 3-2 provides an inventory of active *E. coli* sampling sites, and Table 3-3 provides a summary of the currently available *E. coli* data for these sites. Table values in bold are indicative of exceedances of state criteria. It is important to note that the data in this table typically cover a longer period of record than that used in the *Draft* 2006 Texas Water Quality Inventory. Table 3-2: East Fork Sampling Sites | TCEQ# | TCEQ Description | |-------|---| | 17431 | EAST FORK SAN JACINTO RIVER IMMEDIATELY DOWNSTREAM OF SH 150 WEST OF COLDSPRING | | 14242 | EAST FORK SAN JACINTO RIVER IMMEDIATELY DOWNSTREAM OF US 59 AT RED GULLY | | 11235 | EAST FORK SAN JACINTO RIVER AT FM 1485 | Table 3-3: East Fork *E. coli* Data Summary | Table 3-3. East Folk E. Coll Data Summary | | | | | |---|--------|--------|--------|--| | Station | 17431 | 14242 | 11235 | | | Reach | E Fork | E Fork | E Fork | | | Begin Date | Mar-02 | Jun-00 | Jun-00 | | | End Date | Jul-04 | Apr-05 | May-05 | | | Count | 11 | 39 | 86 | | | 75th Percentile | 620 | 492 | 423 | | | Geometric mean | 197 | 199 | 198 | | | 25th Percentile | 84 | 79 | 79 | | #### 3.3 SPATIAL AND TEMPORAL ANALYSIS Spatial analysis can be helpful when attempting to locate sources of bacteria. Figure 3-2 shows the variation in bacteria concentrations from upstream to downstream across the watershed. As shown, the bacteria concentrations are of similar magnitude at each of the three sampling sites. Temporal analysis can be useful for determining the emergence or diminution of bacteria sources over time. Figures 3-3, 3-4, and 3-5 present bacteria concentration over time for stations 17431, 14242, and 11235, respectively. For these stations, no significant temporal trends were observed. Figure 3-2: East Fork Spatial Analysis Figure 3-3: Temporal Analysis: East Fork at SH 150 (#17431) Figure 3-4: Temporal Analysis: East Fork at US 59 (#14242) Figure 3-5: Temporal Analysis: East Fork at FM 1485 (#11235) #### 3.4 LOAD DURATION CURVE DEVELOPMENT #### 3.4.1 Flow Duration Curves A flow duration curve (FDC) is a graph of daily average streamflow versus the percent of days that the average streamflow value is exceeded. FDCs are typically developed using daily flow data collected at USGS gaging stations. For this project, the desired period of record for FDC development is 1987-2006. Table 3-4 identifies the active USGS flow gaging stations in the segment for this time period. The locations of these gages are presented in Figure 3-1. Flow duration curves for these two USGS stations are shown in Figure 3-6. Table 3-4: East Fork USGS Flow Gages | Station | Stream | Location | Available FDC | |----------|--------------------------------|-----------------------|---------------| | Otation | Otream | Location | data | | 08070000 | East Fork San
Jacinto River | near Cleveland,
TX | 1987-2006 | | 08070200 | East Fork San
Jacinto River | near New Caney,
TX | 1987-2006 | Figure 3-6: East Fork Flow Duration Curves To create load duration curves, each water quality sampling site must have a complete flow record. Since most sampling sites do not have a corresponding USGS flow gage, these records have to be synthesized using nearby gages and drainage area adjustment factors. #### 3.4.2 Load Duration Curves This section presents load duration curves for various water quality sampling stations throughout the study area. The bacterial loads are the product of each grab sample bacteria concentration and the corresponding mean daily streamflow rate. Bacteria standards are represented in these figures by curves for the geometric mean and grab sample criteria, 126 org/100mL and 394 org/100mL, respectively. Load duration curves are presented from upstream to downstream along the main segment, and then along tributaries. An LDC for the East Fork San Jacinto River at State Highway 150 is presented in Figure 3-7. There are too few data for this station to draw any conclusions from LDC analysis. Additional sampling could provide better source characterization at this station. Figures 3-8 and 3-9 present LDCs for the East Fork at US Highway 59 and FM 1485, respectively. For both of these stations, the greatest exceedances typically occur under high flow conditions (0-20th percentile), but high bacteria levels are observed under lower flow conditions as well. Therefore, it is possible that both wet and dry weather bacteria sources contribute significantly to these stations. Figure 3-7: LDC for East Fork at SH 150 (#17431) Figure 3-8: LDC for East Fork at US 59 (#14242) Figure 3-9: LDC for East Fork at FM 1485 (#11235) #### 3.5 DISCUSSION OF POTENTIAL SOURCES There have historically been two general classifications of sources of pollutants that were distinguished by the mechanism of release to a receiving stream. Sources that were released via a pipe or defined outfall were labeled as "point sources", while sources that were diffuse in nature were labeled as "nonpoint sources". Thus, "point sources" of bacteria would usually include facilities such as wastewater treatment plants. Traditional "nonpoint sources" would include, but not be limited to, leaking sewer systems, failing septic systems, pets, wildlife, livestock, and general urban and rural runoff. However, TMDLs do not always adhere to the
traditional usage of the terms point source and nonpoint source. In accordance with EPA guidance, TMDLs are developed to establish two categories of allocations: wasteload allocations (WLAs) and load allocations (LA). EPA has determined that any source flowing into a waterway and covered by a permit should be classified as a waste load and be included in the WLA category. Thus, the "waste load" category would include not only facilities such as wastewater treatment plants, but also discharges of runoff from municipal areas covered under stormwater permits (MS4s). Remaining diffuse sources of pollutants that are not covered by permit are defined as "loads" and ultimately are subject to development of the LA. This would include runoff from rural or urban areas outside of permitting jurisdictions. #### 3.5.1 Upstream Sources There are no waterbodies upstream of the East Fork San Jacinto River. #### 3.5.2 Runoff Sources Runoff sources of bacteria can fall into either the waste load or load category, depending on the presence or absence of a permit allowing for discharge into a waterway. Runoff sources of bacteria can be anticipated based on land use. For example, it has been observed that natural areas typically produce the smallest runoff source loads. This is because they tend to produce the least runoff volume and tend to have the lowest density of fecal sources. Rural (farm and ranch) areas also tend to have smaller source loads for the same reasons. However, in both natural and rural areas, significant bacteria sources can still sometimes exist. For example, natural areas could include dense waterfowl areas, and rural areas could include confined animal pens. Urban areas tend to produce larger bacteria loads. This is generally the result of high impervious cover, which increases the frequency and intensity of runoff events. It can also be the result of an increasing density in potential sources (leaking sewage collection systems, failing septic drainfields, pets, wildlife, etc.). Land use data for the East Fork watershed are shown in Figure 3-10. As shown, the upper portion of the watershed includes primarily forest, wetland, and pasture. The lower portion of the watershed includes rural and light residential land uses. The source of the data is USGS, 2001. Figure 3-10: East Fork Land Use # 3.5.3 Wastewater Treatment Facilities Wastewater treatment facilities have the potential to contribute significant bacteria loads if complete disinfection is not achieved. These loads may be most noticeable under low flow conditions, during which some streams may be effluent dominated. However, it is also possible for treatment plants to contribute significant loads under wet weather conditions. This could be the case if increased loading due to stormwater inflow and infiltration results in poorer plant performance. Wastewater treatment plants in the East Fork watershed are shown in Table 3-5. This table includes the permitted flow, estimated current flow, and disinfection monitoring requirements for each facility. Facilities without monitoring requirements for disinfection (marked "N") are typically facilities without a significant potential bacteria source (i.e. industries or drinking water treatment plants). Treatment facility discharge locations are shown in Figure 3-11. For this segment, the total permitted flow is approximately 0.9 MGD (1.4 cfs), and the total current effluent flow is approximately 0.6 MGD (0.9 cfs). (For facilities with unknown current flows, half the permitted flow was used.) Wastewater treatment facilities can represent a significant portion of the segment's baseflow (which could be defined as the 50th to 99th percentile range of the FDC). At the 50^{th} percentile flow, current effluent discharges account for about 1% of total stream flow, while at the 99^{th} percentile, they account for about 6% of the total flow. Table 3-5: East Fork Wastewater Treatment Facility Summary | TCEQ Permit | EPA Permit | | | Permitted | Current | Disinfection | |-------------|------------|-----------------------------|---------|------------|------------|--------------| | Number | Number | Name | County | Flow (MGD) | Flow (MGD) | Monitoring | | 01905-000 | TX0028169 | New Waverly Ventures Ltd Co | Walker | variable | 0.10 | F | | 02919-000 | TX0102121 | Gardner Glass Products, Inc | Walker | 0.102 | unk | N | | 04249-000 | TX0123421 | Steely Lumber Co., Inc. | Walker | n/a | unk | N | | 10766-001 | TX0053473 | City of Cleveland | Liberty | 0.75 | 0.41 | С | | 11844-001 | TX0071765 | Forest Glen, Inc | Walker | 0.04 | 0.009 | С | C=chlorine residual, F=fecal coliform, N=none, unk=unknown Figure 3-11: East Fork Treatment Facility Discharge Locations ### 4.0 WEST FORK SAN JACINTO RIVER, SEGMENT 1004 # 4.1 TCEQ ASSESSMENT FOR 303(d) LIST When determining compliance with state water quality criteria, TCEQ often divides segments into various assessment units (AU) to refine the spatial resolution of the impairment. Assessment units for the West Fork of the San Jacinto River are shown in Table 4-1. The information included in Table 4-1 is from the *Draft 2006 Texas Water Quality Inventory*, which was used as a basis for the *Draft 2006 Texas 303(d) List* (TCEQ, 2007). The period of record used by TCEQ in this assessment was 1 December 1999 through 30 November 2004. The "# Exceed" column provides the number of samples that exceeded the grab sample criterion for *E. coli* (394 org/100mL). Generally, TCEQ allows up to 25% of the samples to exceed the grab sample criterion before considering the reach impaired. The "Geo. Mean" column provides the geometric mean of the *E. coli* samples. If this number exceeds the criterion of 126 org/100mL, then the reach is considered impaired. As shown, three of the assessment units were found to be impaired for *E. coli*, and one unit was found to be unimpaired. Table 4-1: West Fork Assessment Units and Results | Assessment
Unit | Segment Name | Assessment Unit Description | #
Samples | #
Exceed | Geo.
Mean | Impaired | |--------------------|--------------------------------|--|--------------|-------------|--------------|----------| | 1004_01 | West Fork San Jacinto
River | Lake Conroe Dam to IH45 | 39 | 6 | 60 | No | | 1004_02 | West Fork San Jacinto
River | IH 45 to the Spring Creek confluence | 38 | 10 | 167 | Yes | | 1004D_01 | Crystal Creek | Confluence with West Fork
San Jacinto River upstream
to confluence of the East
and West Forks of Crystal
Creek | 86 | 19 | 136 | Yes | | 1004E_02 | Stewarts Creek | From Airport Rd to confluence with West Fork San Jacinto River | 88 | 33 | 225 | Yes | The locations of the assessment units are displayed in Figure 4-1. Also shown in this figure are water quality sampling locations where *E. coli* data have been regularly collected. Generally, each assessment unit corresponds to one or more sampling sites. However, at site #11250, bacteria sampling did not begin until late 2004, and so this station was not included in the TCEQ's 2006 assessment. Figure 4-1: West Fork Study Area ### 4.2 SUMMARY OF E. COLI DATA BY STATION With very few exceptions, *E. coli* sampling did not begin until 2000. (Before 2000, samples were only analyzed for fecal coliform.) Table 4-2 provides an inventory of active *E. coli* sampling sites, and Table 4-3 provides a summary of the currently available *E. coli* data for these sites. Table values in bold are indicative of exceedances of state criteria. Because of the limited number of data available at Station 11250, the results for this station should be interpreted with caution. It is important to note that the data in this table typically cover a longer period of record than that used in the *Draft 2006 Texas Water Quality Inventory*. Table 4-2: West Fork Sampling Sites | | Tuest : 2: West I am aumpring area | | |-------|---|----------| | TCEQ# | TCEQ Description | USGS# | | 11251 | WEST FORK SAN JACINTO RIVER IMMEDIATELY DOWNSTREAM OF SH 105 NW OF CONROE | 08067650 | | 11250 | WEST FORK SAN JACINTO RIVER 70 METERS UPSTREAM OF FM 2854 WEST OF CONROE | | | 16626 | STEWARTS CREEK 175 METERS DOWNSTREAM OF SH LOOP 336 SOUTHEAST OF CONROE | | | 16624 | WEST FORK SAN JACINTO RIVER 267 METERS DOWNSTREAM OF SH 242/LAZY RIVER ROAD | | | 16635 | CRYSTAL CREEK AT SH 242 SOUTHEAST OF CONROE | | Table 4-3: West Fork *E. coli* Data Summary | Station | 11251 | 11250 | 16626 | 16624 | 16635 | |-----------------|--------|--------|----------|--------|---------| | Reach | W Fork | W Fork | Stewarts | W Fork | Crystal | | Begin Date | Jun-00 | Oct-04 | Jun-00 | Jun-00 | Jun-00 | | End Date | Apr-05 | Jul-06 | Apr-05 | Apr-05 | Apr-05 | | Count | 41 | 8 | 91 | 41 | 89 | | 75th Percentile | 130 | 366 | 373 | 400 | 316 | | Geometric mean | 69 | 178 | 229 | 170 | 164 | | 25th Percentile | 20 | 95 | 210 | 62 | 25 | # 4.3 SPATIAL AND TEMPORAL ANALYSIS Spatial analysis can be helpful when attempting to locate sources of bacteria. Figure 4-2 shows the variation in bacteria concentrations from upstream to downstream across the watershed. As shown, the lowest bacteria concentrations are observed at the most upstream station (11251). The highest bacteria concentrations can generally be found at Station 16626, on Stewarts Creek. Temporal analysis can be useful for determining the emergence or diminution of bacteria sources over time. Figures 4-3, 4-4, and 4-5 present bacteria concentration over time for main stem station 16624 and tributary stations 16626 and 16635. For these stations, no significant temporal trends were observed. Figure 4-2: West Fork Spatial Analysis Figure 4-3: Temporal Analysis: West Fork at SH 242 (#16624) Figure 4-4: Temporal Analysis: Stewarts Creek (#16626) Figure 4-5: Temporal Analysis: Crystal Creek
(#16635) ### 4.4 LOAD DURATION CURVE DEVELOPMENT # **4.4.1 Flow Duration Curves** A flow duration curve (FDC) is a graph of daily average streamflow versus the percent of days that the average streamflow value is exceeded. FDCs are typically developed using daily flow data collected at USGS gaging stations. For this project, the desired period of record for FDC development is 1987-2006. Table 4-4 identifies the active USGS flow gaging stations in the segment for this time period. The locations of these gages are presented in Figure 4-1. The flow records for Gage 08067650 include large gaps making the data unusable for FDC development. Generally, these gaps corresponded with periods of low to moderate flows. Flow duration curves for the two applicable USGS stations are shown in Figure 4-6. | Table 4-4: West Fork USGS Flow Gage | able 4-4: | 4: West For | k USGS Flow | Gages | |-------------------------------------|-----------|-------------|-------------|-------| |-------------------------------------|-----------|-------------|-------------|-------| | Station | Stream | Location | Available FDC data | |----------|--------------------------------|------------------------------------|--------------------| | 08067650 | West Fork San
Jacinto River | below Lk Conroe
near Conroe, TX | N/A | | 08068000 | West Fork San
Jacinto River | near Conroe, TX | 1987-2006 | | 08068090 | West Fork San
Jacinto River | above Lk Houston near Porter, TX | 1987-2006 | Figure 4-6: West Fork Flow Duration Curves To create load duration curves, each water quality sampling site must have a complete flow record. Since most sampling sites do not have a corresponding USGS flow gage, these records have to be synthesized using nearby gages and drainage area adjustment factors. For the two tributary stations, flow records were synthesized based on the nearby USGS flow gage 08070500 on Caney Creek, which has a more similar upstream drainage area. Additional description of this gage is presented in Section 7.0. ### **4.4.2** Load Duration Curves This section presents load duration curves for various water quality sampling stations throughout the study area. The bacterial loads are the product of each grab sample bacteria concentration and the corresponding mean daily streamflow rate. Bacteria standards are represented in these figures by curves for the geometric mean and grab sample criteria, 126 org/100mL and 394 org/100mL, respectively. Load duration curves are presented from upstream to downstream along the main segment, and then along tributaries. For the stations on the main stem of the West Fork, the determination of dry versus wet weather flow conditions can be somewhat complicated by flow releases from the dam at Lake Conroe. LDCs were not developed for Stations 11251 and 11250. For both stations, adequate flow records could not be readily synthesized. As shown in Table 4-2, bacteria concentrations at Station 11251 are well below the state criteria. Flows at this site are dominated by releases from Lake Conroe, which apparently has low bacteria levels. At Station 11250 bacteria concentrations appear to be higher, but there are too few data points for an adequate assessment. An LDC for the West Fork San Jacinto River at State Highway 242 is presented in Figure 4-7. The greatest exceedances typically occur under high flow conditions, but high bacteria levels are sometimes observed under lower flow conditions as well. Therefore, it is possible that both wet and dry weather bacteria sources contribute significantly to this station. Additional sampling could provide better source characterization at this station. An LDC for Stewarts Creek (Station 16626) is presented in Figure 4-8. The greatest exceedances typically occur under high flow conditions, but high bacteria levels are often observed under lower flow conditions as well. Therefore, it is possible that both wet and dry weather bacteria sources contribute significantly to this station. An LDC for the Crystal Creek (Station 16635) is presented in Figure 4-9. As with the previous stations, the greatest exceedances typically occur under high flow conditions. Under low flow conditions, bacteria levels are lower, but still sometimes exceed criteria. Both wet and dry weather bacteria sources are influencing this station, but it may be the wet weather sources that are primarily responsible for impairment. Figure 4-7: LDC for West Fork at SH 242 (#16624) Figure 4-8: LDC for Stewarts Creek (#16626) Figure 4-9: LDC for Crystal Creek (#16635) ### 4.5 DISCUSSION OF POTENTIAL SOURCES There have historically been two general classifications of sources of pollutants that were distinguished by the mechanism of release to a receiving stream. Sources that were released via a pipe or defined outfall were labeled as "point sources", while sources that were diffuse in nature were labeled as "nonpoint sources". Thus, "point sources" of bacteria would usually include facilities such as wastewater treatment plants. Traditional "nonpoint sources" would include, but not be limited to, leaking sewer systems, failing septic systems, pets, wildlife, livestock, and general urban and rural runoff. However, TMDLs do not always adhere to the traditional usage of the terms point source and nonpoint source. In accordance with EPA guidance, TMDLs are developed to establish two categories of allocations: wasteload allocations (WLAs) and load allocations (LA). EPA has determined that any source flowing into a waterway and covered by a permit should be classified as a waste load and be included in the WLA category. Thus, the "waste load" category would include not only facilities such as wastewater treatment plants, but also discharges of runoff from municipal areas covered under stormwater permits (MS4s). Remaining diffuse sources of pollutants that are not covered by permit are defined as "loads" and ultimately are subject to development of the LA. This would include runoff from rural or urban areas outside of permitting jurisdictions. # 4.5.1 Upstream Sources Water quality in the West Fork of the San Jacinto River is influenced by two upstream segments. The first of these is Lake Conroe (Segment 1012) at the upstream end of the West Fork. The second of these is Lake Creek (Segment 1015) which enters the West Fork near the City of Conroe. The configuration of these segments can be observed in Figure 1-1. Based on the TCEQ database, the geometric mean of all Lake Conroe *E. coli* data is less than 5 org/100mL. Station 11251, on the West Fork below Lake Conroe, has a geometric mean *E. coli* concentration of 69 org/100mL. While this is significantly higher than Lake Conroe and possibly indicative of nearby bacteria sources, this value is still well below the geometric mean criterion of 126 org/100mL. Only 20 *E. coli* samples for Lake Creek (various stations) are available in the TCEQ database. The geometric mean of these 20 samples is 85 org/100mL indicating that the stream is in compliance with state criteria. Therefore, this segment is probably not a major contributor of bacteria to the West Fork. ### 4.5.2 Runoff Sources Runoff sources of bacteria can fall into either the waste load or load category, depending on the presence or absence of a permit allowing for discharge into a waterway. Runoff sources of bacteria can be anticipated based on land use. For example, it has been observed that natural areas typically produce the smallest runoff source loads. This is because they tend to produce the least runoff volume and tend to have the lowest density of fecal sources. Rural (farm and ranch) areas also tend to have smaller source loads for the same reasons. However, in both natural and rural areas, significant bacteria sources can still sometimes exist. For example, natural areas could include dense waterfowl areas, and rural areas could include confined animal pens. Urban areas tend to produce larger bacteria loads. This is generally the result of high impervious cover, which increases the frequency and intensity of runoff events. It can also be the result of an increasing density in potential sources (leaking sewage collection systems, failing septic drainfields, pets, wildlife, etc.). Land use data for the West Fork watershed are shown in Figure 4-10. As shown, the watershed includes a wide variety of land uses, ranging from wetlands, to forests, to rangeland, to urban areas. The source of the data is USGS, 2001. Figure 4-10: West Fork Land Use # 4.5.3 Wastewater Treatment Facilities Wastewater treatment facilities have the potential to contribute significant bacteria loads if complete disinfection is not achieved. These loads may be most noticeable under low flow conditions, during which some streams may be effluent dominated. However, it is also possible for treatment plants to contribute significant loads under wet weather conditions. This could be the case if increased loading due to stormwater inflow and infiltration results in poorer plant performance. Wastewater Treatment Plants in the West Fork watershed are shown in Table 4-5. This table includes the permitted flow, estimated current flow, and disinfection monitoring requirements for each facility. Facilities without monitoring requirements for disinfection (marked "N") are typically facilities without a significant potential bacteria source (i.e. industries or drinking water treatment plants). Treatment facility discharge locations are shown in Figure 4-11. For this segment, the total permitted flow is approximately 23 MGD (36 cfs), and the total current effluent flow is approximately 11 MGD (18 cfs). (For facilities with unknown current flows, half the permitted flow was used.) Wastewater treatment facilities can represent a significant portion of the segment's baseflow (which could be defined as the 50th to 99th percentile range of the FDC). At the 50th percentile flow, current effluent discharges account for about 17% of total stream flow, while
at the 99th percentile, they account for 100% of the total flow. Table 4-5: West Fork Wastewater Treatment Facility Summary | TCEQ Permit | EPA Permit | ie i 5. West I olk Waste water I | | Permitted | Current | Disinfection | |-------------|------------|--|------------|------------|------------|--------------| | Number | Number | Name | County | Flow (MGD) | Flow (MGD) | Monitoring | | 00584-000 | TX0005592 | Huntsman Petrochemical Corp | Montgomery | 0.75 | 0.38 | N | | 02365-000 | TX0034681 | Maverick Tube, L.P. | Montgomery | 0.11 | 0.03 | N | | 02475-000 | TX0087190 | Drilling Specialties Co. LLC | Montgomery | 0.02 | 0.005 | N | | 02475-000 | TX0087190 | Drilling Specialties Co. LLC | Montgomery | 0.02 | 0.005 | N | | 02502-000 | TX0087793 | Hanson Aggregates Central, Inc. | Montgomery | 0.35 | unk | N | | 10008-002 | TX0022268 | City of Conroe | Montgomery | 10.00 | 5.97 | С | | 10315-001 | TX0068845 | City of Willis | Montgomery | 0.80 | 0.57 | С | | 10495-142 | TX0088501 | City of Houston | Montgomery | unk | unk | unk | | 10978-001 | TX0025674 | River Plantation MUD | Montgomery | 0.60 | 0.41 | С | | 11097-001 | TX0020206 | City of Panorama Village | Montgomery | 0.40 | 0.23 | С | | 11395-001 | TX0022055 | Montgomery Co MUD #15 | Montgomery | 0.90 | unk | С | | 11580-001 | TX0075680 | Town of Woodloch | Montgomery | 0.12 | 0.05 | С | | 11658-001 | TX0063461 | San Jacinto River Authority | Montgomery | 0.90 | 0.46 | F | | 11820-001 | TX0069256 | Lazy River ID | Montgomery | 0.10 | 0.06 | С | | 11878-001 | TX0073997 | Evangelistic Temple | Montgomery | 0.01 | unk | С | | 11963-001 | TX0076368 | Montgomery Co MUD #42 | Montgomery | 0.15 | 0.08 | С | | 12212-002 | TX0093564 | City of Shenandoah | Montgomery | 3.00 | 0.45 | С | | 12761-001 | TX0093505 | Malek Vashmeh | Montgomery | 0.05 | 0.02 | С | | 13700-001 | TX0090123 | Chateau Woods MUD | Montgomery | 0.20 | 0.09 | С | | 13760-001 | TX0089672 | Montgomery Co MUD #56 | Montgomery | 0.10 | 0.06 | С | | 13985-001 | TX0117706 | Montgomery Co MUD 89 | Montgomery | 0.50 | 0.16 | С | | 14114-001 | TX0119504 | Aqua Development, Inc | Montgomery | unk | unk | unk | | 14248-001 | TX0099180 | Vanceco, Inc | Montgomery | 0.02 | 0.002 | С | | 14414-001 | TX0125601 | Woodland Lake Development, LTD | Montgomery | 0.90 | unk | С | | 14482-001 | TX0126209 | Montgomery Co. MUD # 83 | Montgomery | 0.60 | unk | С | | 14523-001 | TX0126713 | Elan Land Investments LP | Montgomery | 0.60 | unk | С | | 14531-001 | TX0126799 | JTM Housting LTD and Quadvest Inc | Montgomery | 0.60 | 0.04 | С | | 14586-001 | TX0127400 | LMV Management Co. LTD | Montgomery | 0.90 | unk | С | | 14604-001 | TX0127752 | Northway Land Company, LTD | Montgomery | 0.58 | unk | С | | 14671-001 | TX0128431 | Houston Intercontinental Trade Center LP | Montgomery | unk | unk | unk | | 14709-001 | TX0102962 | Stone Hedge Utility Co, Inc | Montgomery | 0.02 | unk | С | C=chlorine residual, F=fecal coliform, N=none, unk=unknown Figure 4-11: West Fork Treatment Facility Discharge Locations ### 5.0 SPRING CREEK, SEGMENT 1008 # 5.1 TCEQ ASSESSMENT FOR 303(d) LIST When determining compliance with state water quality criteria, TCEQ often divides segments into various assessment units (AU) to refine the spatial resolution of the impairment. Assessment units for Spring Creek are shown in Table 5-1. The information included in Table 5-1 is from the *Draft 2006 Texas Water Quality Inventory*, which was used as a basis for the *Draft 2006 Texas 303(d) List* (TCEQ, 2007). The period of record used by TCEQ in this assessment was 1 December 1999 through 30 November 2004. The "# Exceed" column provides the number of samples that exceeded the grab sample criterion for *E. coli* (394 org/100mL). Generally, TCEQ allows up to 25% of the samples to exceed the grab sample criterion before considering the reach impaired. The "Geo. Mean" column provides the geometric mean of the *E. coli* samples. If this number exceeds the criterion of 126 org/100mL, then the reach is considered impaired. As shown, only three of the assessment units were found to be impaired for *E. coli*. Included in the project area are three other assessment units (for Bear Branch and Lower Panther Branch) with limited available data (less than 10 samples). Though not included on the *303(d) List*, this project will take loads into account from these contributing tributaries. The locations of the assessment units are displayed in Figures 5-1a and 5-1b. Figure 5-1a shows the greater Spring Creek watershed and Figure 5-1b provides a more detailed view of the Panther Branch tributaries. Also shown in these figures are water quality sampling locations where *E. coli* data have been regularly collected. Generally, each assessment unit corresponds to one or more sampling sites. Table 5-1: Spring Creek Assessment Units and Results | | | Thig Cicck Assessment O | | losares | | | |--------------------|----------------------|--|--------------|-------------|--------------|-----------------| | Assessment
Unit | Segment Name | Assessment Unit Description | #
Samples | #
Exceed | Geo.
Mean | Impaired | | 1008_02 | Spring Creek | Field Store Road to SH 249 | 71 | 23 | 303 | Yes | | 1008_03 | Spring Creek | SH 249 to IH 45 | 73 | 31 | 310 | Yes | | 1008_04 | Spring Creek | IH 45 to confluence with
Lake Houston | 36 | 14 | 309 | Yes | | 1008B_01 | Upper Panther Branch | From Old Conroe Road to
the confluence with Bear
Branch | 18 | 3 | 138 | Yes | | 1008C_01 | Lower Panther Branch | From the Lake Woodlands
Dam to Saw Dust Road | 9 | 3 | 165 | Concern | | 1008C_02 | Lower Panther Branch | From Saw Dust Road to confluence with Spring Creek | 9 | 2 | | Concern | | 1008E_01 | Bear Branch | Entire stream | 9 | 1 | 190 | Not
assessed | | 1008F_01 | Lake Woodlands | Upper end of segment to
Northshore Park/Woodlock
Forest | 9 | 2 | 45 | No | | 1008F_02 | Lake Woodlands | Northshore Park/Woodlock
Forest to inflow from
unnamed tributary | 9 | 2 | 38 | No | | 1008F_03 | Lake Woodlands | From inflow of unnamed tributary to dam | 9 | 2 | 56 | No | | 1008F_04 | Lake Woodlands | Arm near dam adjacent to
West Isle Drive and
Pleasure Cove Drive | 9 | 2 | 63 | No | | 1008H_01 | Willow Creek | Entire segment | 35 | 18 | 413 | Yes | Figure 5-1a: Spring Creek Study Area Figure 5-1b: Panther Branch Study Area # 5.2 SUMMARY OF E. COLI DATA BY STATION With very few exceptions, *E. coli* sampling did not begin until 2000. (Before 2000, samples were only analyzed for fecal coliform.) Table 5-2 provides an inventory of active *E. coli* sampling sites, and Tables 5-3a and 5-3b provide a summary of the currently available *E. coli* data for these sites. Table values in bold are indicative of exceedances of state criteria. It is important to note that the data in these tables typically cover a longer period of record than that used in the *Draft 2006 Texas Water Quality Inventory*. Table 5-2: Spring Creek Sampling Sites | | Table 5-2: Spring Creek Sampling Sites | | |-------|---|----------| | TCEQ# | TCEQ Description | USGS# | | 11323 | SPRING CREEK IMMEDIATELY UPSTREAM OF DECKER PRAIRIE ROSEHILL ROAD | | | 11314 | SPRING CREEK IMMEDIATELY UPSTREAM OF SH 249 | 08068275 | | 17489 | SPRING CREEK IMMEDIATELY DOWNSTREAM OF KUYKENDAHL ROAD NORTHEAST OF HOUSTON | | | 11185 | WILLOW CREEK IMMEDIATELY UPSTREAM OF GOSLING ROAD | | | 16629 | UPPER PANTHER BRANCH APPROX 80 M UPSTREAM OF PERMIT WQ0012597-001 LOCATED AT 5402 RESEARCH FOREST DR | | | 16630 | UPPER PANTHER BRANCH APPROX 60 M DOWNSTREAM OF PERMIT WQ0012597-001 LOCATED AT 5402 RESEARCH FOREST DR | | | 16631 | BEAR BRANCH BRIDGE 153 METERS DOWNSTREAM OF RESEARCH FOREST DRIVE | 08068390 | | 16484 | LAKE WOODLANDS AT NORTH END 111 METERS DOWNSTREAM OF RESEARCH FOREST DRIVE IN THE WOODLANDS | | | 16483 | LAKE WOODLANDS AT MID POINT 69 METERS NORTH AND 513
METERS EAST OF INTERSECTION OF N WINDSAIL PL AND
SHORELINE PT IN THE WOODLANDS | | | 16481 | LAKE WOODLANDS AT WESTERN REACH 104 METERS NORTH
AND 306 METERS E OF INTERSECTION OF LEEWARD CV AND
PANTHER CREEK DR IN THE WOODLANDS | | | 16482 | LAKE WOODLANDS AT SOUTH END 147 METERS NORTH AND 48 METERS EAST WEST EDGE OF DAM IN THE WOODLANDS | | | 16627 | LOWER PANTHER BRANCH 89 M UPSTREAM OF SAWDUST RD
APPROX 25 M UPSTREAM OF PERMIT WQ0011401-001 LOCATED
AT 2436 SAWDUST ROAD | | | 16628 | LOWER PANTHER BRANCH 134 DOWNSTREAM OF SAWDUST RD
APPROX 240 M DOWNSTREAM OF PERMIT WQ0011401-001
LOCATED AT 2436 SAWDUST ROAD | | | 11313 | SPRING CREEK BRIDGE AT IH 45 20 MILES NORTH OF HOUSTON | 08068500 | | 11312 | SPRING CREEK IMMEDIATELY DOWNSTREAM OF RILEY FUZZEL ROAD | | Table 5-3a: Spring Creek E. coli Data Summary | Station | 11323 | 11314 | 17489 | 11185 | 11313 | 11312 | |-----------------|--------|--------|--------|--------|--------|--------| | Reach | Spring | Spring | Spring | Willow | Spring | Spring | | Begin Date | Jan-02 | Jun-00 | Jan-02 | Jan-02 | Jun-00 | Dec-01 | | End Date | May-05 | Apr-05 | May-05 | May-05 | Apr-05 | May-05 | | Count | 41 | 39 | 42 | 41 | 40 | 42 | | 75th Percentile | 600 | 619 | 1103 | 2000 | 612 | 810 | | Geometric mean | 346 | 351 | 432 | 483 | 271 | 370 | | 25th Percentile | 120 | 130 | 143 | 120 | 82 | 106 | Table 5-3b: Panther Branch E. coli Data Summary | Station | 16629 | 16630 | 16631 | 16484 | 16483 | 16481 | 16482 | 16627 | 16628 | |-----------------|---------|---------|--------|--------|--------|--------|--------|---------|---------| | Reach | Panther | Panther | Bear | Lake | Lake | Lake | Lake | Panther | Panther | | Begin Date | Oct-02 | Oct-02 | Mar-99 | Oct-02 | Oct-02 | Oct-02 | Oct-02 | Oct-02 | Oct-02 | | End Date | Jul-05 | Count | 12 | 12 | 18 | 12
 12 | 12 | 12 | 12 | 12 | | 75th Percentile | 263 | 391 | 295 | 130 | 128 | 416 | 367 | 526 | 485 | | Geometric mean | 141 | 200 | 202 | 53 | 39 | 67 | 65 | 177 | 179 | | 25th Percentile | 83 | 119 | 90 | 18 | 10 | 10 | 18 | 60 | 60 | #### 5.3 SPATIAL AND TEMPORAL ANALYSIS Spatial analysis can be helpful when attempting to locate sources of bacteria. Figures 5-2a and 5-2b illustrate the variation in bacteria concentrations from upstream to downstream across the watershed. Figure 2a shows that bacteria concentrations are high all along the main stem of Spring Creek with relatively little variation. Bacteria concentrations in the Willow Creek tributary are notably higher than in the main stem of Spring Creek. Figure 2b suggests that bacteria concentrations in the Panther and Bear Creek tributaries are generally above state criteria. However, Lake Woodlands seems to effectively reduce bacteria concentrations. Temporal analysis can be useful for determining the emergence or diminution of bacteria sources over time. Figures 5-3 through 5-8 present bacteria concentration over time for main stem stations and for Willow Creek. No stations for the Panther Branch system are shown because of the limited number of samples available at these stations. Figure 5-2a: Spring Creek Spatial Analysis Figure 5-2b: Panther Branch Spatial Analysis Figure 5-3: Temporal Analysis: Spring Crk at Rosehill Rd (#11323) Figure 5-4: Temporal Analysis: Spring Crk at SH 249 (#11314) Figure 5-5: Temporal Analysis: Spring Crk at Kuykendahl Rd (#17489) Figure 5-6: Temporal Analysis: Spring Crk at IH 45 (#11313) Figure 5-7: Temporal Analysis: Spring Crk at Riley Fuzzel Rd (#11312) Figure 5-8: Temporal Analysis: Willow Crk at Rosling Rd (#11185) ### 5.4 LOAD DURATION CURVE DEVELOPMENT # **5.4.1** Flow Duration Curves A flow duration curve (FDC) is a graph of daily average streamflow versus the percent of days that the average streamflow value is exceeded. FDCs are typically developed using daily flow data collected at USGS gaging stations. For this project, the desired period of record for FDC development is 1987-2006. Table 5-4 identifies the active USGS flow gaging stations in the segment for this time period. The locations of these gages are presented in Figure 5-1. The flow records for Gage 08068325 include large gaps and apparent errors making the data unusable for FDC development. Flow duration curves for the applicable USGS stations are shown in Figure 5-9. Table 5-4: Spring Creek USGS Flow Gages | Station | Stream | Location | Available
FDC data | |----------|----------------|--|-----------------------| | 08068275 | Spring Creek | near Tomball, TX | 1999-2006 | | 08068325 | Willow Creek | near Tomball, TX | N/A | | 08068390 | Bear Branch | at Research Blvd,
The Woodlands, TX | 1999-2006 | | 08068400 | Panther Branch | at Gosling Rd, The
Woodlands, TX | 1999-2006 | | 08068450 | Panther Branch | near Spring, TX | 1999-2006 | | 08068500 | Spring Creek | near Spring, TX | 1987-2006 | To create load duration curves, each water quality sampling site must have a complete flow record. Since most sampling sites do not have a corresponding USGS flow gage, these records have to be synthesized using nearby gages and drainage area adjustment factors. For Willow Creek, flow records were synthesized based on a composite of the two Spring Creek gages. Figure 5-9: Spring Creek Flow Duration Curves # **5.4.2 Load Duration Curves** This section presents load duration curves for various water quality sampling stations throughout the study area. The bacterial loads are the product of each grab sample bacteria concentration and the corresponding mean daily streamflow rate. Bacteria standards are represented in these figures by curves for the geometric mean and grab sample criteria, 126 org/100mL and 394 org/100mL, respectively. Load duration curves are presented from upstream to downstream along the main segment, and then along tributaries. Load duration curves for the main stem of Spring Creek are presented in Figures 5-10 through 5-14. For these stations, the greatest exceedances typically occur under high flow conditions (0-20th percentile), but high bacteria levels are observed under lower flow conditions as well. Therefore, it is possible that both wet and dry weather bacteria sources contribute significantly to these stations. An LDC for Willow Creek is presented in Figure 5-15. This figure displays more scatter than the main stem stations. However, this could be a result of the imprecision in the synthesized nature of the flow record for this station. Generally, exceedances are observed under both high and low flow conditions. Therefore, it is possible that both wet and dry weather bacteria sources contribute significantly to these stations. An LDC for Upper Panther Branch is presented in Figure 5-16. Data from two stations (16629 and 16630) are included in this LDC because of the closeness of these two stations. Generally, exceedances are observed under both high and low flow conditions. Therefore, it is possible that both wet and dry weather bacteria sources contribute significantly to these stations. However, additional sampling could provide better definition of the source types for this stream. An LDC for Bear Branch is presented in Figure 5-17. As with the stations on Upper Panther Branch, exceedances are observed under both high and low flow conditions. Therefore, it is possible that both wet and dry weather bacteria sources contribute significantly to these stations. However, additional sampling could provide better definition of the source types for this stream. An LDC for the Lake Woodlands stations is presented in Figure 5-18. At this station, exceedances are observed primarily under high flow conditions. Under low flow conditions, the long residence time of the reservoir allows for the natural die off of bacteria. An LDC for the Lower Panther Branch stations is presented in Figure 5-19. As with the stations on Upper Panther Branch, exceedances are observed under both high and low flow conditions. Therefore, it is possible that both wet and dry weather bacteria sources contribute significantly to these stations. However, additional sampling could provide better definition of the source types for this stream. Figure 5-10: LDC for Spring Crk at Rosehill Rd (#11323) Figure 5-11: LDC for Spring Crk at SH 249 (#11314) Figure 5-12: LDC for Spring Crk at Kuykendahl Rd (#17489) Figure 5-13: LDC for Spring Crk at IH 45 (#11313) Figure 5-14: LDC for Spring Crk at Riley Fuzzel Rd (#11312) Figure 5-15: LDC for Willow Crk at Rosling Rd (#11185) Figure 5-16: LDC for Upper Panther Branch (#16629-30) Figure 5-17: LDC for Bear Branch (#16631) Figure 5-18: LDC for Lake Woodlands (#16481-84) Figure 5-19: LDC for Lower Panther Branch (#16627-28) ### 5.5 DISCUSSION OF POTENTIAL SOURCES There have historically been two general classifications of sources of pollutants that were distinguished by the mechanism of release to a receiving stream. Sources that were released via a pipe or defined outfall were labeled as "point sources", while sources that were diffuse in nature were labeled as "nonpoint sources". Thus, "point sources" of bacteria would usually include facilities such as wastewater treatment plants. Traditional "nonpoint sources" would include, but not be limited to, leaking sewer systems, failing septic systems, pets, wildlife, livestock, and general urban and rural runoff. However, TMDLs do not always adhere to the traditional usage of the terms point source and nonpoint source. In accordance with EPA guidance, TMDLs are developed to establish two categories of allocations: wasteload allocations (WLAs) and load allocations (LA). EPA has determined that any source flowing into a waterway and covered by a permit should be classified as a waste load and be included in the WLA category. Thus, the "waste load" category would include not only facilities such as wastewater treatment plants, but also discharges of runoff from municipal areas covered under stormwater permits (MS4s). Remaining diffuse sources of pollutants that are not covered by permit are defined as "loads" and ultimately are subject to development of the LA. This would include runoff from rural or urban areas outside of permitting jurisdictions. # 5.5.1 Upstream Sources There are no waterbodies upstream of Spring Creek. # **5.5.2 Runoff Sources** Runoff sources of bacteria can fall into either the waste load or load category, depending on the presence or absence of a permit allowing for discharge into a waterway. Runoff sources of bacteria can be anticipated based on land use. For example, it has been observed that natural areas typically produce the smallest runoff source loads. This is because they tend to produce the least runoff volume and tend to have the lowest density of fecal sources. Rural (farm and ranch) areas also tend to have smaller source loads for the same reasons. However, in both natural and rural areas, significant bacteria sources can still sometimes exist. For example, natural areas could include dense waterfowl areas, and rural areas could include confined animal pens. Urban areas tend to produce larger bacteria loads. This is generally the result of high impervious cover, which increases the frequency and intensity of runoff events. It can also be the result of an increasing density in potential sources (leaking sewage collection systems, failing septic drainfields, pets, wildlife, etc.). Land use data for the Spring Creek watershed are shown in Figure 5-20. The eastern portion of the watershed includes the heavily urbanized community known as The Woodlands, primarily located within the Panther Branch subwatershed. The remainder of the watershed includes a mixture of forest, wetlands, farm and range land, and urbanized areas. The source of the data is USGS, 2001. Figure 5-20: Spring Creek Land Use # **5.5.3** Wastewater
Treatment Facilities Wastewater treatment facilities have the potential to contribute significant bacteria loads if complete disinfection is not achieved. These loads may be most noticeable under low flow conditions, during which some streams may be effluent dominated. However, it is also possible for treatment plants to contribute significant loads under wet weather conditions. This could be the case if increased loading due to stormwater inflow and infiltration results in poorer plant performance. Wastewater treatment plants in the Spring Creek watershed are shown in Table 5-5. This table includes the permitted flow, estimated current flow, and disinfection monitoring requirements for each facility. Facilities without monitoring requirements for disinfection (marked "N") are typically facilities without a significant potential bacteria source (i.e. industries or drinking water treatment plants). Treatment facility discharge locations are shown in Figures 5-21a and 5-21b. For this segment, the total permitted flow is approximately 43 MGD (67 cfs), and the total current effluent flow is approximately 17 MGD (27 cfs). (For facilities with unknown current flows, half the permitted flow was used.) Wastewater treatment facilities can represent a significant portion of the segment's baseflow (which could be defined as the 50th to 99th percentile range of the FDC). At the 50th percentile flow, current effluent discharges account for about 39% of total stream flow, while at the 99th percentile, they account for 100% of the total flow. Table 5-5: Spring Creek Wastewater Treatment Facility Summary | Table 5-5: Spring Creek Wastewater Treatment Facility Summary TCEQ Permit EPA Permit Permit Disinfection | | | | | | |--|--|--|---|--|---| | | | _ | | | Disinfection | | | | | | | Monitoring | | | • | | | | С | | | • | | | | С | | | • . | | | | С | | | | | | | С | | | • | | | | С | | | | | | | С | | | · · · · · · · · · · · · · · · · · · · | | | | C | | | | | | | С | | | | | | | С | | | . • | | | | С | | | | | | | С | | | | | | | С | | | , | | | | С | | | • • • | | | | С | | | • • | | | | С | | | · · | | | | С | | | | | | | С | | | | | | | С | | | · | | | | С | | | • • | | | | С | | | • | | | | С | | | • | | | | C
C | | | • • • | | | | F | | | · · · · · · · · · · · · · · · · · · · | | | | C | | | 1 0 | | | | C | | | • | | | | | | | • • | | | | C
C | | | • | | | | C | | | | | | | C | | | • | | | | C | | | · | | | | C | | | | | | | C | | | | | | | C | | | | | | | Č | | | · | | | | Č | | | · | | | | Č | | | · | | | | Č | | | | | | | Č | | | • | | | | Ċ | | | | | | | Ċ | | | | | | | C | | X0117846 | | Montgomery | 0.13 | unk | Ċ | | X0118028 | AquaSource Development Co | | 0.05 | unk | C | | X0119598 | • | | 0.02 | 0.07 | Č | | X0119857 | White Oak Utilities, Inc | Montgomery | 0.20 | 0.04 | Ċ | | | | | 0.45 | unk | C | | X0122530 | Aqua Development, Inc | Harris | 0.08 | 0.02 | C | | | | | | | F | | A0123301 | Diocese of Gaiveston Houston | Monigoniery | 0.02 | | | | X0094315 | HMV Special Utility District | Montgomery | 0.02 | 0.03 | С | | | | | | | | | X0094315 | HMV Special Utility District | Montgomery | 0.03 | 0.03 | С | | X0094315
X0124907 | HMV Special Utility District The Woodlands Land Development Co. LP | Montgomery
Harris | 0.03
unk | 0.03
unk | C
unk | | X0094315
X0124907
X0125687 | HMV Special Utility District The Woodlands Land Development Co. LP 2920 Venture, LTD/ Harris County MUD #4014 | Montgomery
Harris
Harris | 0.03
unk
0.60 | 0.03
unk
0.002 | C
unk
C
C
C | | X0094315
X0124907
X0125687
X0126152 | HMV Special Utility District The Woodlands Land Development Co. LP 2920 Venture, LTD/ Harris County MUD #4014 Northwest Harris Co. MUD #19 | Montgomery
Harris
Harris
Harris | 0.03
unk
0.60
0.70 | 0.03
unk
0.002
0 | C
unk
C
C | | TX0094315
TX0124907
TX0125687
TX0126152
TX0126306 | HMV Special Utility District The Woodlands Land Development Co. LP 2920 Venture, LTD/ Harris County MUD #4014 Northwest Harris Co. MUD #19 Is Zen Center | Montgomery Harris Harris Harris Montgomery | 0.03
unk
0.60
0.70
0.04 | 0.03
unk
0.002
0
0.001 | C
unk
C
C
C
C | | TX0094315
TX0124907
TX0125687
TX0126152
TX0126306
TX0125547 | HMV Special Utility District The Woodlands Land Development Co. LP 2920 Venture, LTD/ Harris County MUD #4014 Northwest Harris Co. MUD #19 Is Zen Center South Central Water Company 1774 Utilities, Corp AUC Group, LP | Montgomery Harris Harris Harris Montgomery Harris | 0.03
unk
0.60
0.70
0.04
0.04 | 0.03
unk
0.002
0
0.001 | C
unk
C
C
C | | X0094315
X0124907
X0125687
X0126152
X0126306
X0125547
X0126934 | HMV Special Utility District The Woodlands Land Development Co. LP 2920 Venture, LTD/ Harris County MUD #4014 Northwest Harris Co. MUD #19 Is Zen Center South Central Water Company 1774 Utilities, Corp | Montgomery Harris Harris Harris Montgomery Harris Montgomery | 0.03
unk
0.60
0.70
0.04
0.04
0.15 | 0.03
unk
0.002
0
0.001
0 | C
unk
C
C
C
C
C | | X0094315
X0124907
X0125687
X0126152
X0126306
X0125547
X0126934
X0127035 | HMV Special Utility District The Woodlands Land Development Co. LP 2920 Venture, LTD/ Harris County MUD #4014 Northwest Harris Co. MUD #19 Is Zen Center South Central Water Company 1774 Utilities, Corp AUC Group, LP | Montgomery Harris Harris Harris Montgomery Harris Montgomery Montgomery Montgomery | 0.03
unk
0.60
0.70
0.04
0.04
0.15
0.95 | 0.03
unk
0.002
0
0.001
0
0.008
unk | C
unk
C
C
C
C
C
C | | TX0094315
TX0124907
TX0125687
TX0126152
TX0126306
TX0125547
TX0126934
TX0127035
TX0127663 | HMV Special Utility District The Woodlands Land Development Co. LP 2920 Venture, LTD/ Harris County MUD #4014 Northwest Harris Co. MUD #19 Is Zen Center South Central Water Company 1774 Utilities, Corp AUC Group, LP South Central Water Company | Montgomery Harris Harris Harris Montgomery Harris Montgomery Montgomery Montgomery Montgomery | 0.03
unk
0.60
0.70
0.04
0.04
0.15
0.95 | 0.03
unk
0.002
0
0.001
0
0.008
unk
0 | C
unk
C
C
C
C
C
C
C | | TX0094315
TX0124907
TX0125687
TX0126152
TX0126306
TX0125547
TX0126934
TX01277035
TX01277035
TX0127795 | HMV Special Utility District The Woodlands Land Development Co. LP 2920 Venture, LTD/ Harris County MUD #4014 Northwest Harris Co. MUD #19 Is Zen Center South Central Water Company 1774 Utilities, Corp AUC Group, LP South Central Water Company South Central Water Company | Montgomery Harris Harris Harris Montgomery Harris Montgomery Montgomery Montgomery Harris | 0.03
unk
0.60
0.70
0.04
0.04
0.15
0.95
0.32
0.08 | 0.03
unk
0.002
0
0.001
0
0.008
unk
0 | C
unk
C
C
C
C
C
C | | X0094315
X0124907
X0125687
X0126152
X0126306
X0126306
X0125547
X0126934
X0127035
X0127663
X0127795
X0127850 | HMV Special Utility District The Woodlands Land Development Co. LP 2920 Venture, LTD/ Harris County MUD #4014 Northwest Harris Co. MUD #19 Is Zen Center South Central Water Company 1774 Utilities, Corp AUC Group, LP South Central Water Company South Central Water Company South Central Water Company Maple Ridge, LTD | Montgomery Harris Harris Harris
Montgomery Harris Montgomery Montgomery Montgomery Harris Harris Harris | 0.03
unk
0.60
0.70
0.04
0.05
0.95
0.32
0.08
0.64 | 0.03
unk
0.002
0
0.001
0
0.008
unk
0
0 | C unk
C C C C C C C C C C C C C C C C C C C | | X0094315
X0124907
X0125687
X0126152
X0126306
X0125547
X0126934
X0127035
X0127663
X0127795
X0127850
X0127973 | HMV Special Utility District The Woodlands Land Development Co. LP 2920 Venture, LTD/ Harris County MUD #4014 Northwest Harris Co. MUD #19 Is Zen Center South Central Water Company 1774 Utilities, Corp AUC Group, LP South Central Water Company 501 Maple Ridge, LTD Rosehill Utilities, Inc | Montgomery Harris Harris Harris Montgomery Harris Montgomery Montgomery Montgomery Harris Harris Waller | 0.03
unk
0.60
0.70
0.04
0.04
0.15
0.95
0.32
0.08
0.64 | 0.03
unk
0.002
0
0.001
0
0.008
unk
0
0
0
unk | C
unk
C
C
C
C
C
C
C
C
C | | X0094315
X0124907
X0125687
X0126152
X0126306
X0125547
X0126934
X0127035
X0127795
X0127850
X0127973
X0128295 | HMV Special Utility District The Woodlands Land Development Co. LP 2920 Venture, LTD/ Harris County MUD #4014 Northwest Harris Co. MUD #19 Is Zen Center South Central Water Company 1774 Utilities, Corp AUC Group, LP South Central Water Company 501 Maple Ridge, LTD Rosehill Utilities, Inc Montgomery Co MUD #94 | Montgomery Harris Harris Harris Montgomery Harris Montgomery Montgomery Montgomery Harris Harris Waller Montgomery | 0.03
unk
0.60
0.70
0.04
0.04
0.15
0.95
0.32
0.08
0.64
0.02
1.08 | 0.03
unk
0.002
0
0.001
0
0.008
unk
0
0
0
unk
unk | C unk
C C C C C C C C C C C C C C C C C C C | | | PA Permit Jumber | PA Permit Number X0022381 City of Tomball X0017595 City of Tomball X0020974 Harris County WCID #92 X0058548 Northampton MUD X0024759 Southern Montgomery County MUD X002655 Dowdell PUD X0056537 Harris Co. MUD #26 X002621 Spring Creek UD X0056530 Harris Co. MUD #1 X0071528 Harris Co. MUD #32 X0072702 City of Magnolia X0077275 Tecon Water Company, LP X0078263 And UD X0078433 Harris Co MUD #368 X0081264 North Harris Co MUD #19 X0085693 Aqua Utilities, Inc X0080915 Aquasource Utility, Inc X0091715 San Jacinto River Authority X0091725 Pinewood Community LP X009208 Ping Cate, Inc X0090905 Eastwood Mobile Home Park, Inc. X0090905 Richard Clark Enterprises, LLC X009312 Aqua Utilities, Inc X009283 Richard Clark Enterprises, LLC X009172 Pinewood Community LP X009262 Richard Clark Enterprises, LLC X0095125 Aqua Utilities, Inc X0119628 Timbercrest Community Association X0119628 Timbercrest Community Association X0119628 Richfield Investment Corp X0083976 Aqua Utilities, Inc X00109622 Richfield Investment Corp X0083976 Aqua Utilities, Inc X00110623 Magnolia ISD X0090000 Cedarstone One Investors, Inc X0117631 Inline Utilities, LLC X0117846 AquaSource Development Co X0118028 Aqua Development, Inc X0119687 White Oak Utilities, Inc X0112530 Aqua Development, Inc | Name | PA Permit Name | Mame | C=chlorine residual, F=fecal coliform, N=none, unk=unknown Figure 5-21a: Spring Creek Treatment Facility Discharge Locations East Figure 5-21b: Spring Creek Treatment Facility Discharge Locations West #### 6.0 CYPRESS CREEK, SEGMENT 1009 # 6.1 TCEQ ASSESSMENT FOR 303(d) LIST When determining compliance with state water quality criteria, TCEQ often divides segments into various assessment units (AU) to refine the spatial resolution of the impairment. Assessment units for Cypress Creek are shown in Table 6-1. The information included in Table 6-1 is from the *Draft 2006 Texas Water Quality Inventory*, which was used as a basis for the *Draft 2006 Texas 303(d) List* (TCEQ, 2007). The period of record used by TCEQ in this assessment was 1 December 1999 through 30 November 2004. The "# Exceed" column provides the number of samples that exceeded the grab sample criterion for *E. coli* (394 org/100mL). Generally, TCEQ allows up to 25% of the samples to exceed the grab sample criterion before considering the reach impaired. The "Geo. Mean" column provides the geometric mean of the *E. coli* samples. If this number exceeds the criterion of 126 org/100mL, then the reach is considered impaired. As shown, each of the seven assessment units was found to be impaired for *E. coli*. Table 6-1: Cypress Creek Assessment Units and Results | Assessment
Unit | Segment Name | Assessment Unit Description | #
Samples | #
Exceed | Geo.
Mean | Impaired | |--------------------|----------------------|--|--------------|-------------|--------------|----------| | 1009_01 | Cypress Creek | Upper portion of segment to downstream of US 290 | 35 | 14 | 304 | Yes | | 1009_02 | Cypress Creek | US 290 to SH 249 | 87 | 40 | 446 | Yes | | 1009_03 | Cypress Creek | SH 249 to IH 45 | 75 | 43 | 525 | Yes | | 1009_04 | Cypress Creek | IH 45 to confluence with
Spring Creek | 15 | 4 | 370 | Yes | | 1009C_01 | Faulkey Gully | From an unnamed lake 0.3
miles southeast of Telge
Road to the confluence with
Cypress Creek | 36 | 15 | 550 | Yes | | 1009D_01 | Spring Gully | From immediately south of
Spring Cypress Road to the
confluence with Spring Creek | 36 | 22 | 651 | Yes | | 1009E_01 | Little Cypress Creek | Entire Segment | 35 | 20 | 612 | Yes | The locations of the assessment units are displayed in Figure 6-1. Also shown in this figure are water quality sampling locations where *E. coli* data have been regularly collected. Generally, each assessment unit corresponds to one or more sampling sites. Figure 6-1: Cypress Creek Study Area #### 6.2 SUMMARY OF E. COLI DATA BY STATION With very few exceptions, *E. coli* sampling did not begin until 2000. (Before 2000, samples were only analyzed for fecal coliform.) Table 6-2 provides an inventory of active *E. coli* sampling sites, and Table 6-3 provides a summary of the currently available *E. coli* data for these sites. Table values in bold are indicative of exceedances of state criteria. It is important to note that the data in this table typically cover a longer period of record than that used in the *Draft* 2006 Texas Water Quality Inventory. Table 6-2: Cypress Creek Sampling Sites | TCEQ# | TCEQ Description | |-------|--| | 11333 | CYPRESS CREEK IMMEDIATELY DOWNSTREAM OF HOUSE HAHL ROAD NEAR CYPRESS | | 14159 | LITTLE CYPRESS CREEK IMMEDIATELY DOWNSTREAM OF KLUGE
ROAD IN HOUSTON | | 11332 | CYPRESS CREEK IMMEDIATELY DOWNSTREAM OF GRANT ROAD NEAR CYPRESS | | 17496 | FAULKEY GULLY OF CYPRESS CREEK 105 METERS DOWNSTREAM OF LAKEWOOD FOREST DRIVE NORTHWEST OF HOUSTON | | 11331 | CYPRESS CREEK AT SH 249 | | 11330 | CYPRESS CREEK AT STEUBNER-AIRLINE ROAD IN HOUSTON | | 17481 | SPRING GULLY AT SPRING CREEK OAKS DRIVE IN TOMBALL | | 11328 | CYPRESS CREEK BRIDGE ON IH 45 15 MI NORTH OF HOUSTON | | 11324 | CYPRESS CREEK IMEDIATELY DOWNSTREAM OF CYPRESSWOOD DRIVE/OLD TETTAR RD EXTENSION | Table 6-3: Cypress Creek E. coli Data Summary | Station | 11333 | 14159 | 11332 | 17496 | 11331 | 11330 | 17481 | 11328 | 11324 | |-----------------|---------|------------|---------|---------|---------|---------|--------|---------|---------| | Reach | Cypress | Little Cyp | Cypress | Faulkey | Cypress | Cypress | Spring | Cypress | Cypress | | Begin Date | Jan-02 | Jan-02 | Jan-01 | Jan-02 | Jun-00 | Jan-02 | Jan-02 | Jun-00 | Jan-01 | | End Date | May-05 | May-05 | May-06 | May-05 | Apr-05 | May-05 | May-05 | May-05 | Jun-06 | | Count | 41 | 41 | 61 | 42 | 41 | 42 | 42 | 100 | 22 | | 75th Percentile | 580 | 1700 | 1200 | 1075 | 1112 | 1275 | 1325 | 1925 | 1659 | | Geometric mean | 291 | 589 | 405 | 555 | 573 | 642 | 597 | 533 | 470 | | 25th Percentile | 110 | 210 | 110 | 175 | 242 | 228 | 233 | 130 | 182 | ## 6.3 SPATIAL AND TEMPORAL ANALYSIS Spatial analysis can be helpful when attempting to locate sources of bacteria. Figure 6-2 shows the variation in bacteria concentrations from upstream to downstream across the watershed. As shown, the lowest bacteria concentrations are observed at the most upstream station (11333), though even here bacteria levels are still well above criteria. The highest bacteria concentrations can generally be found at Station 11330, on Cypress Creek. Temporal analysis can be useful for determining the emergence or diminution of bacteria sources over time. Figures 6-3 through 6-11 present bacteria concentration over time for the main stem and tributary stations of Cypress Creek. A couple of the figures (particularly stations 11332 and 11328) suggest that bacteria concentrations may have increased gradually throughout the period of record. Figure 6-2: Cypress Creek Spatial Analysis Figure 6-3: Temporal Analysis: Cypress Creek at Hahl Road (#11333) Figure 6-4: Temporal Analysis: Cypress Creek at Grant Road (#11332) Figure 6-5: Temporal Analysis: Cypress Creek at SH 249 (#11331) Figure 6-6: Temporal Analysis: Cypress Creek at Steubner-Airline Road (#11330) Figure 6-7: Temporal Analysis: Cypress Creek at at IH 45 (#11328) Figure 6-8: Temporal Analysis: Cypress Creek at Cypresswood Drive (#11324) Figure 6-9: Temporal Analysis: Little Cypress Creek at Kluge Road (#14159) Figure 6-10: Temporal Analysis: Faulkey Gully at Lakewood Forest Drive (#17496) Figure 6-11: Temporal Analysis: 17481 Spring Gully at Spring Crk Oaks Rd (#17481) #### 6.4 LOAD DURATION CURVE DEVELOPMENT ## **6.4.1 Flow Duration Curves** A flow duration curve (FDC) is a graph of daily average streamflow versus the percent of days that the average streamflow value is exceeded. FDCs are typically developed using daily flow data collected at USGS gaging stations. For this project, the desired period of record for FDC
development is 1987-2006. Table 6-4 identifies the active USGS flow gaging stations in the segment for this time period. The locations of these gages are presented in Figure 6-1. Flow duration curves for the applicable USGS stations are shown in Figure 6-12. Table 6-4: Cypress Creek USGS Flow Gages | Station | Stream | Location | Available FDC data | |---------|-------------------------|--|-------------------------| | 8068700 | Cypress Creek | at Sharp Rd nr
Hockley, TX | N/A | | 8068720 | Cypress Creek | at Katy-Hockley
Rd nr Hockley,
TX | 1987-2006 | | 8068740 | Cypress Creek | at House-Hahl Rd
nr Cypress, TX | 1987-2006 | | 8068780 | Little Cypress
Creek | near Cypress, TX | 1987-1992,
1997-2006 | | 8068800 | Cypress Creek | at Grant Rd nr
Cypress, TX | 1987-1992,
2001-2006 | | 8068900 | Cypress Creek | at Stuebner-
Airline Rd nr
Westfield, TX | N/A | | 8069000 | Cypress Creek | near Westfield,
TX | 1987-2006 | To create load duration curves, each water quality sampling site must have a complete flow record. Since most sampling sites do not have a corresponding USGS flow gage, these records have to be synthesized using nearby gages and drainage area adjustment factors. For the stations on Faulkey Gully and Spring Gully, flows were synthesized based on the nearby USGS flow gage 08068390 on Bear Branch. Additional description of this gage is presented in Section 5.0. Figure 6-12: Cypress Creek Flow Duration Curves #### **6.4.2 Load Duration Curves** This section presents load duration curves for various water quality sampling stations throughout the study area. The bacterial loads are the product of each grab sample bacteria concentration and the corresponding mean daily streamflow rate. Bacteria standards are represented in these figures by curves for the geometric mean and grab sample criteria, 126 org/100mL and 394 org/100mL, respectively. Load duration curves are presented from upstream to downstream along the main segment, and then along tributaries. Figures 6-13 through 6-18 present LDCs for stations on the main stem of Cypress Creek. Generally the greatest exceedances at these stations typically occur under high flow conditions, but high bacteria levels are sometimes observed under lower flow conditions as well. Therefore, it is possible that both wet and dry weather bacteria sources contribute significantly to this station. At station 11328 near IH 45, bacteria concentrations are unusually high during low flow conditions, suggesting that dry weather sources may be especially severe at this location. An LDC for Little Cypress Creek (Station 14159) is presented in Figure 6-19. The greatest exceedances typically occur under high flow conditions, but high bacteria levels are often observed under lower flow conditions as well. Therefore, it is possible that both wet and dry weather bacteria sources contribute significantly to this station. An LDC for Faulkey Gully (Station 17496) is presented in Figure 6-16. The greatest exceedances typically occur under high flow conditions, but high bacteria levels are often observed under lower flow conditions as well. Therefore, it is possible that both wet and dry weather bacteria sources contribute significantly to this station. An LDC for Spring Gully (Station 17481) is presented in Figure 6-19. The greatest exceedances typically occur under high flow conditions, but high bacteria levels are often observed under lower flow conditions as well. Therefore, it is possible that both wet and dry weather bacteria sources contribute significantly to this station. Figure 6-13: LDC for Cypress Creek at Hahl Road (#11333) Figure 6-14: LDC for Cypress Creek at Grant Road (#11332) Figure 6-15: LDC for Cypress Creek at SH 249 (#11331) Figure 6-16: LDC for Cypress Creek at Steubner-Airline Road (#11330) Figure 6-17: LDC for Cypress Creek at IH 45 (#11328) Figure 6-18: LDC for Cypress Creek at Cypresswood Drive (#11324) Figure 6-19: LDC for Little Cypress Creek at Kluge Road (#14159) Figure 6-20: LDC for Faulkey Gully at Lakewood Forest Drive (#17496) Figure 6-21: LDC for Spring Gully at Spring Creek Oaks Road (#17481) ## 6.5 DISCUSSION OF POTENTIAL SOURCES There have historically been two general classifications of sources of pollutants that were distinguished by the mechanism of release to a receiving stream. Sources that were released via a pipe or defined outfall were labeled as "point sources", while sources that were diffuse in nature were labeled as "nonpoint sources". Thus, "point sources" of bacteria would usually include facilities such as wastewater treatment plants. Traditional "nonpoint sources" would include, but not be limited to, leaking sewer systems, failing septic systems, pets, wildlife, livestock, and general urban and rural runoff. However, TMDLs do not always adhere to the traditional usage of the terms point source and nonpoint source. In accordance with EPA guidance, TMDLs are developed to establish two categories of allocations: wasteload allocations (WLAs) and load allocations (LA). EPA has determined that any source flowing into a waterway and covered by a permit should be classified as a waste load and be included in the WLA category. Thus, the "waste load" category would include not only facilities such as wastewater treatment plants, but also discharges of runoff from municipal areas covered under stormwater permits (MS4s). Remaining diffuse sources of pollutants that are not covered by permit are defined as "loads" and ultimately are subject to development of the LA. This would include runoff from rural or urban areas outside of permitting jurisdictions. #### **6.5.1** Upstream Sources There are no waterbodies upstream of Cypress Creek. #### **6.5.2** Runoff Sources Runoff sources of bacteria can fall into either the waste load or load category, depending on the presence or absence of a permit allowing for discharge into a waterway. Runoff sources of bacteria can be anticipated based on land use. For example, it has been observed that natural areas typically produce the smallest runoff source loads. This is because they tend to produce the least runoff volume and tend to have the lowest density of fecal sources. Rural (farm and ranch) areas also tend to have smaller source loads for the same reasons. However, in both natural and rural areas, significant bacteria sources can still sometimes exist. For example, natural areas could include dense waterfowl areas, and rural areas could include confined animal pens. Urban areas tend to produce larger bacteria loads. This is generally the result of high impervious cover, which increases the frequency and intensity of runoff events. It can also be the result of an increasing density in potential sources (leaking sewage collection systems, failing septic drainfields, pets, wildlife, etc.). Land use data for the Cypress Creek watershed are shown in Figure 6-23. As shown, the eastern portion of the watershed is heavily urbanized. The western portion of the watershed is comprised mostly of farm and range land. The source of the data is USGS, 2001. Figure 6-23: Cypress Creek Land Use ## **6.5.3** Wastewater Treatment Facilities Wastewater treatment facilities have the potential to contribute significant bacteria loads if complete disinfection is not achieved. These loads may be most noticeable under low flow conditions, during which some streams may be effluent dominated. However, it is also possible for treatment plants to contribute significant loads under wet weather conditions. This could be the case if increased loading due to stormwater inflow and infiltration results in poorer plant performance. Wastewater treatment plants in the Cypress Creek watershed are presented in Table 6-5. This table includes the permitted flow, estimated current flow, and disinfection monitoring requirements for each facility. Facilities without monitoring requirements for disinfection (marked "N") are typically facilities without a significant potential bacteria source (i.e. industries or drinking water treatment plants). Treatment facility discharge locations are shown in Figures 6-24a and 5-24b. For this segment, the total permitted flow is approximately 74 MGD (116 cfs), and the total current effluent flow is approximately 29 MGD (45 cfs). (For facilities with unknown current flows, half the permitted flow was used.) Wastewater treatment facilities can represent a significant portion of the segment's baseflow (which could be defined as the 50th to 99th percentile range of the FDC). At the 50th percentile flow, current effluent discharges account for about 76% of total stream flow, while at the 99^{th} percentile, they account for 100% of the total flow. Table 6-5: Cypress Creek Wastewater Treatment Facility Summary | | | 6-5: Cypress Creek Wastewater Trea | itment Fac | | | | |-------------|------------|--|------------|------------|------------|--------------| | TCEQ Permit | EPA Permit | | | Permitted | Current | Disinfection | | Number | Number | Name | County | Flow (MGD) | Flow (MGD) | Monitoring | | 01310-001 | TX0032476 | City of Waller | Waller | 0.90 | unk | С | | 02608-000 | TX0092258 | Center Point Energy Houston Electric LLC | Harris | 0.02 | 0.002 | N | | 03076-000 | TX0118605 | Skinner Nurseries, Inc. | Harris | variable | unk | F | | 03627-000 | TX0118320 | Vopak Logistics Services USA, Inc | Harris | variable | 0.33 | N | | 04313-000 | TX0113948 | Northwest Airport Management LP | Harris | variable | unk | N | | 10528-001 | TX0026450 | Harris Co. FWSD # 52 | Harris | 0.70 | 0.32 | С | | 10783-001 | TX0023612 | Inverness Forest ID | Harris | 0.50 | 0.20 | С | | 10955-001 | TX0046710 | Harris County WCID #116 | Harris | 1.30 | 0.65 | С | | 10962-001 | TX0062049 | Harris County WCID #113 | Harris | 0.30 | 0.11 | С | | 11024-001 | TX0021211 | Harris Co WCID #119 | Harris | 1.00
| 0.42 | С | | 11044-001 | TX0046671 | Memorial Hills UD | Harris | 0.50 | 0.19 | С | | 11081-001 | TX0046761 | Ponderosa Joint Powers Agency | Harris | 4.87 | 2.90 | С | | 11084-001 | TX0046833 | Lake Forest Plant Advisory Council | Harris | 2.76 | 1.33 | С | | 11089-001 | TX0046701 | Prestonwood Frest UD | Harris | 0.95 | 0.32 | С | | 11105-001 | TX0046639 | Bammel UD | Harris | 2.60 | 1.06 | С | | 11141-001 | TX0046728 | Treschwig Joint Powers Board | Harris | 2.00 | 1.20 | С | | 11142-002 | TX0046680 | Timber Lane UD | Harris | 2.62 | 0.93 | F | | 11215-001 | TX0046663 | Meadowhill Regional MUD | Harris | 2.40 | 0.52 | С | | 11239-001 | TX0055166 | CNP UD | Harris | 2.50 | 0.86 | F | | 11267-001 | TX0046868 | Timberlake ID | Harris | 0.40 | 0.26 | Ċ | | 11314-001 | TX0046744 | Aqua Texas, Inc | Harris | 0.40 | unk | C | | 11366-001 | TX0046779 | Cypress-Klein UD | Harris | 0.70 | 0.31 | C | | 11409-001 | TX0046817 | Kleinwood Joint Powers Board | Harris | 5.00 | 2.16 | Ċ | | 11410-002 | TX0046841 | Charterwood MUD | Harris | 1.60 | 0.28 | Ċ | | 11444-001 | TX0046736 | Harris County WCID #99 | Harris | 0.23 | 0.09 | Ċ | | 11572-001 | TX0047775 | Pilchers Property LP/ Northland Joint Venture ¹ | Harris | 0.06 | 0.03 | Ċ | | 11618-003 | TX0118371 | Hunter's Glen MUD | Harris | 1.40 | 0.36 | Ċ | | 11814-001 | TX0071609 | Boys and Girls Country of Houston | Harris | 0.10 | 0.02 | Ċ | | 11824-001 | TX0072346 | Northwest Harris County MUD #5 | Harris | 0.80 | 0.44 | C | | 11824-002 | TX0128210 | Northwest Harris Co. MUD #5 | Harris | 0.40 | unk | Ċ | | 11832-001 | TX0072354 | Faulkey Gully MUD | Harris | 1.42 | 0.67 | C,F | | 11835-001 | TX0072150 | Bridgestone MUD | Harris | 2.50 | 0.85 | C | | 11855-001 | TX0072567 | North Park PUD | Harris | 1.31 | 0.40 | Ċ | | 11886-001 | TX0073105 | Six Flag Splashtown L.P. | Harris | 0.06 | unk | Ċ | | 11887-001 | TX0073393 | Grant Rd PUD | Harris | 0.31 | 0.17 | Ċ | | 11900-001 | TX0074217 | Tina Lee Tilles DBA Turk Brothers Building | Harris | 0.00 | 0.0004 | Ċ | | 11912-002 | TX0075159 | Northwest Harris Co MUD #10 | Harris | 1.50 | 0.48 | Ċ | | 11913-001 | TX0075183 | Northwest Freeway MUD | Harris | 0.45 | 0.15 | Ċ | | 11925-001 | TX0074632 | Harris Co MUD #104 | Harris | 0.60 | 0.20 | Ċ | | 11933-001 | TX0075671 | Woodcreek MUD | Harris | 0.60 | 0.23 | Č | | 11939-001 | TX0075795 | Northwest Harris Co MUD #15 | Harris | 3.12 | 0.43 | Ċ | | 11941-001 | TX0074322 | Harris Co MUD #58 | Harris | 0.60 | 0.12 | Ċ | | 11964-001 | TX0076481 | Harris Co WCID #110 | Harris | 1.00 | 0.49 | Č | | 11986-001 | TX0076791 | Tower Oak Bend WSC | Harris | 0.05 | unk | Č | | 11988-001 | TX0076751 | Harris Co MUD #24 | Harris | 2.00 | 0.62 | Č | | 11988-002 | TX0113123 | Harris Co MUD #24 | Harris | 0.06 | 0.02 | N | | 11988-003 | TX0113125 | Harris Co MUD #24 | Harris | 0.06 | 0.06 | N | | 12025-002 | TX0077941 | Bilma PUD | Harris | 0.75 | 0.29 | C | | 12224-001 | TX0077341 | Klein ISD | Harris | 0.73 | 0.005 | C | | | | coliform N. none unk unknown | 1101113 | 0.01 | 0.000 | | C=chlorine residual, F=fecal coliform, N=none, unk=unknown Table 6-5: Cypress Creek Wastewater Treatment Facility Summary (continued) | | | cypiess creek wastewater freati | inclit I actiffly 5 | | | | |-------------|------------|---|---------------------|--------------|------------|--------------| | TCEQ Permit | EPA Permit | | | Permitted | Current | Disinfection | | Number | Number | Name | County | Flow (MGD) | Flow (MGD) | Monitoring | | 12239-001 | TX0084085 | Harris Co MUD #36 | Harris | 0.99 | unk | С | | 12248-001 | TX0084760 | UA Holdings 1994-5 | Harris | 0.10 | 0.03 | С | | 12327-001 | TX0086011 | Cypress Hill MUD #1 | Harris | 0.80 | 0.38 | С | | 12378-002 | TX0092967 | Richey Rd MUD | Harris | 0.45 | 0.32 | С | | 12470-001 | TX0089184 | Harris Co MUD #221 | Harris | 1.80 | 0.69 | C,F | | 12541-001 | TX0090182 | Chasewood Utilities, Inc | Harris | 0.10 | 0.02 | С | | 12579-001 | TX0090824 | Spring West MUD | Harris | 0.76 | 0.10 | С | | 12600-001 | TX0091171 | Elite Computer Consultants, LP | Harris | 0.01 | 0.001 | С | | 12614-001 | TX0091481 | Harris Co MUD #16 | Harris | 0.50 | 0.15 | С | | 12730-001 | TX0090344 | Champ's Water Company | Harris | 0.02 | 0.003 | С | | 12812-001 | TX0093939 | Regency 1-45/ Spring Cypress Retal, L.P. | Harris | 0.06 | 0.002 | С | | 12877-001 | TX0094706 | Harris Co MUD #230 | Harris | 0.76 | 0.20 | С | | 13020-001 | TX0096920 | Harris Co MUD #286 | Harris | 0.60 | 0.21 | С | | 13027-001 | TX0096865 | Harris County | Harris | 0.01 | unk | С | | 13054-001 | TX0097209 | CW-MHP Ltd | Harris | 0.01 | 0.002 | С | | 13059-001 | TX0098434 | Kwik-Kopy Corp | Harris | 0.02 | 0.008 | C | | 13152-001 | TX0098647 | Northwest Harris Co MUD #32 | Harris | 0.65 | 0.36 | Ċ | | 13296-002 | TX0105376 | Harris Co MUD #358 | Harris | 2.00 | 0.79 | Č | | 13472-001 | TX0090841 | Hockley Rail Car, Inc | Harris | 0.01 | 0.0004 | Č | | 13569-001 | TX0078930 | Samuel Victor Pinter | Harris | 0.00 | 0.0002 | Č | | 13573-001 | TX0108120 | Northwest Harris County MUD #36 | Harris | 0.20 | 0.11 | Č | | 13625-001 | TX0081337 | Northwest Harris Co MUD #20 | Harris | 0.40 | 0.60 | Č | | 13711-001 | TX0085910 | Spring Cypress WSC | Harris | 0.04 | 0.02 | Č | | 13753-001 | TX0113107 | Harris Co MUD #360 | Harris | 0.80 | 0.02 | Č | | 13765-001 | TX0115107 | Harris Co MUD #300
Harris Co MUD #249 | Harris | 0.80 | 0.23 | Ċ | | 13819-001 | TX0110000 | Arthur Edward Bayer | Harris | 0.06 | 0.21 | C | | 13875-002 | TX0115983 | Harris Co MUD #383 | Harris | | 0.55 | C | | 13881-001 | TX0115903 | Harris Co MUD #365 | Harris | 1.50
1.20 | 0.53 | Ċ | | 13893-001 | TX0110009 | Dia-Den LTD | Harris | 0.02 | 0.002 | C | | | | | | | | C | | 13942-002 | TX0125466 | Inline Utilities, LLC | Harris | 0.10 | 0 | | | 13963-001 | TX0087424 | Luther's Bar-B-Q, Inc. | Harris | 0.01 | unk | С | | 14028-001 | TX0117129 | Harris Co MUD 371 | Harris | 0.25 | 0.10 | С | | 14030-001 | TX0075221 | Northwest Harris Co MUD #9 | Harris | 1.50 | 0.51 | С | | 14044-001 | TX0092894 | 149 Enterprises, Inc | Harris | 0.01 | unk | С | | 14106-001 | TX0119270 | Aqua Development, Inc | Harris | 0.08 | unk | С | | 14130-001 | TX0081272 | Northwest Harris Co MUD #10 | Harris | 0.05 | 0.001 | С | | 14172-001 | TX0121126 | Utilities Investment Company, Inc | Harris | 0.18 | 0.06 | C | | 14193-001 | TX0122963 | Kennard Tom Foley | Harris | 0.04 | 0.00 | C | | 14209-001 | TX0123366 | CTP Utilities Inc | Harris | 0.18 | 0 | С | | 14327-001 | TX0124770 | Harris Co. MUD #391 | Harris | 0.95 | 0.16 | С | | 14354-001 | TX0124974 | Harris Co. MUD #374 | Harris | 0.65 | unk | С | | 14390-001 | TX0125181 | Huffsmith-Kohrville, Inc | Harris | 0.05 | 0 | С | | 14434-001 | TX0125806 | Westside Water, LLC | Harris | 0.10 | 0.02 | С | | 14441-001 | TX0125881 | Harris County MUD #389 | Harris | 0.30 | unk | С | | 14448-001 | TX0125938 | Houston Warren Ranch Partners, LLC | Harris | 0.55 | 0 | С | | 14476-001 | TX0126161 | Rouse-Houston, LP | Harris | 0.80 | 0.03 | С | | 14526-001 | TX0031305 | Spring ISD | Harris | 0.03 | 0.001 | С | | 14576-001 | TX0127311 | 523 Venture, Inc/ Becker Road LP ³ | Harris | 0.20 | 0 | С | | 14643-001 | TX0128180 | Northwest Harris Co MUD #10 | Harris | 0.09 | 0 | С | | 14644-001 | TX0128198 | Redfin Development Co. Inc. | Harris | unk | 0 | unk | | 14675-001 | TX0128457 | Quadvest, LP | Harris | 0.32 | 0 | С | | 14696-001 | TX0128660 | Loan Oak Partners LP | Harris | unk | unk | unk | | | | adiform N nana unk unknown | | | | | C=chlorine residual, F=fecal coliform, N=none, unk=unknown Figure 6-24a: Cypress Creek Treatment Facility Discharge Locations East Figure 6-24b: Cypress Creek Treatment Facility Discharge Locations West #### 7.0 CANEY CREEK, SEGMENT 1010 # 7.1 TCEQ ASSESSMENT FOR 303(d) LIST When determining compliance with state water quality criteria, TCEQ often divides segments into various assessment units (AU) to refine the spatial resolution of the impairment. Assessment units for Caney Creek are shown in Table 7-1. The information included in Table 7-1 is from the *Draft 2006 Texas Water Quality Inventory*, which was used as a basis for the *Draft 2006 Texas 303(d) List* (TCEQ, 2007). The period of record used by TCEQ in this assessment was 1 December 1999 through 30 November 2004. The "# Exceed" column provides the number of samples that exceeded the grab sample criterion for *E. coli* (394 org/100mL). Generally, TCEQ allows up to 25% of the samples to exceed the grab sample criterion before considering the reach impaired. The "Geo. Mean" column provides the geometric mean of the *E. coli* samples. If this number exceeds the criterion of 126 org/100mL, then the reach is considered impaired. As shown, two of the three assessment units were found to be impaired for *E. coli*. Table 7-1: Caney Creek Assessment Units and Results | Assessment
Unit | Segment Name | Assessment Unit Description | # Samples | #
Exceed | Geo.
Mean | Impaired | |--------------------|--------------|-----------------------------------|-----------|-------------|--------------|----------| | 1010_02 | Caney Creek | FM 1097 to SH 105 | 42 | 10 | 274 | Yes | | 1010_03 | Caney Creek | SH 105 to FM 2090 | 4 | 0 | 83 | No | | 1010_04 | Caney Creek | FM 2090 to lower segment boundary | 81 | 20 | 186 | Yes | The locations of the assessment units are displayed in Figure 7-1. Also shown in this figure are water quality sampling locations where *E. coli* data have been regularly collected. Generally, each assessment unit corresponds to one or more sampling sites. Figure 7-1: Caney Creek Study Area ## 7.2 SUMMARY OF E. COLI DATA BY STATION With very few exceptions, *E. coli* sampling did not begin until 2000. (Before 2000, samples were only analyzed for fecal coliform.) Table 7-2 provides an inventory of active *E. coli* sampling sites, and Table 7-3 provides a summary of the currently available *E.
coli* data for these sites. Table values in bold are indicative of exceedances of state criteria. It is important to note that the data in this table typically cover a longer period of record than that used in the *Draft* 2006 Texas Water Quality Inventory. Table 7-2: Caney Creek Sampling Sites | TCEQ# | TCEQ Description | USGS# | |-------|---|----------| | 14241 | CANEY CREEK AT SH 105 | 08070495 | | 11335 | CANEY CREEK IMMEDIATELY UPSTREAM OF FM 2090 WEST OF SPLENDORA | 08070500 | | 11334 | CANEY CREEK IMMEDIATELY DOWNSTREAM OF FM 1485 | 08070600 | | Table 7-3: Caney C | Creek <i>E. coli</i> | Data Summary | |--------------------|----------------------|--------------| |--------------------|----------------------|--------------| | Tuble 7 3. Calle | y CICCK L | . con Dan | a Dullilliai | |------------------|-----------|-----------|--------------| | Station | 14241 | 11335 | 11334 | | Reach | Caney | Caney | Caney | | Begin Date | Jun-00 | Dec-02 | Jun-00 | | End Date | Apr-05 | Jun-04 | May-06 | | Count | 45 | 9 | 101 | | 75th Percentile | 338 | 170 | 360 | | Geometric | | | | | mean | 264 | 119 | 196 | | 25th Percentile | 104 | 80 | 63 | | | | | | #### 7.3 SPATIAL AND TEMPORAL ANALYSIS Spatial analysis can be helpful when attempting to locate sources of bacteria. Figure 7-2 shows the variation in bacteria concentrations from upstream to downstream across the watershed. Bacteria concentrations do appear to be lowest at the middle station, but this should be observed with caution, since there are relatively few bacteria samples available at this station. Temporal analysis can be useful for determining the emergence or diminution of bacteria sources over time. Figures 7-3 and 7-4 present bacteria concentration over time for the main stem stations. From these figures, it appears that bacteria concentrations are typically higher in the winter months than in the summer. Figure 7-2: Caney Creek Spatial Analysis Figure 7-3: Temporal Analysis: Caney Creek at SH 105 (#14241) Figure 7-4: Temporal Analysis: Caney Creek at FM 1485 (#11334) #### 7.4 LOAD DURATION CURVE DEVELOPMENT ## 7.4.1 Flow Duration Curves A flow duration curve (FDC) is a graph of daily average streamflow versus the percent of days that the average streamflow value is exceeded. FDCs are typically developed using daily flow data collected at USGS gaging stations. For this project, the desired period of record for FDC development is 1987-2006. Table 7-4 identifies the active USGS flow gaging station in the segment for this time period. The location of this gage is presented in Figure 7-1. The flow duration curve for this station is shown in Figure 7-5. Table 7-4: Caney Creek USGS Flow Gages | CC | | | | |----------|-------------|-----------------------|--------------------| | Station | Stream | Location | Available FDC data | | 08070500 | Caney Creek | near Cleveland,
TX | 1987-2006 | Figure 7-5: Caney Creek Flow Duration Curve To create load duration curves, each water quality sampling site must have a complete flow record. Since most sampling sites do not have a corresponding USGS flow gage, these records have to be synthesized using nearby gages and drainage area adjustment factors. ## 7.4.2 Load Duration Curves This section presents load duration curves for various water quality sampling stations throughout the study area. The bacterial loads are the product of each grab sample bacteria concentration and the corresponding mean daily streamflow rate. Bacteria standards are represented in these figures by curves for the geometric mean and grab sample criteria, 126 org/100mL and 394 org/100mL, respectively. Load duration curves are presented from upstream to downstream along the main segment, and then along tributaries. An LDC for Caney Creek at State Highway 105 (#14241) is presented in Figure 7-6. The greatest exceedances typically occur under high flow conditions, but high bacteria levels are sometimes observed under lower flow conditions as well. Therefore, it is possible that both wet and dry weather bacteria sources contribute significantly to this station. An LDC for Caney Creek at FM 1485 (#11334) is presented in Figure 7-7. The greatest exceedances typically occur under high flow conditions, but high bacteria levels are often observed under lower flow conditions as well. Therefore, it is possible that both wet and dry weather bacteria sources contribute significantly to this station. Figure 7-6: LDC for Caney Creek at SH 105 (#14241) Figure 7-7: LDC for Caney Creek at FM 1485 (#11334) # 7.5 DISCUSSION OF POTENTIAL SOURCES There have historically been two general classifications of sources of pollutants that were distinguished by the mechanism of release to a receiving stream. Sources that were released via a pipe or defined outfall were labeled as "point sources", while sources that were diffuse in nature were labeled as "nonpoint sources". Thus, "point sources" of bacteria would usually include facilities such as wastewater treatment plants. Traditional "nonpoint sources" would include, but not be limited to, leaking sewer systems, failing septic systems, pets, wildlife, livestock, and general urban and rural runoff. However, TMDLs do not always adhere to the traditional usage of the terms point source and nonpoint source. In accordance with EPA guidance, TMDLs are developed to establish two categories of allocations: wasteload allocations (WLAs) and load allocations (LA). EPA has determined that any source flowing into a waterway and covered by a permit should be classified as a waste load and be included in the WLA category. Thus, the "waste load" category would include not only facilities such as wastewater treatment plants, but also discharges of runoff from municipal areas covered under stormwater permits (MS4s). Remaining diffuse sources of pollutants that are not covered by permit are defined as "loads" and ultimately are subject to development of the LA. This would include runoff from rural or urban areas outside of permitting jurisdictions. ## 7.5.1 Upstream Sources There are no waterbodies upstream of Caney Creek. # 7.5.2 Runoff Sources Runoff sources of bacteria can fall into either the waste load or load category, depending on the presence or absence of a permit allowing for discharge into a waterway. Runoff sources of bacteria can be anticipated based on land use. For example, it has been observed that natural areas typically produce the smallest runoff source loads. This is because they tend to produce the least runoff volume and tend to have the lowest density of fecal sources. Rural (farm and ranch) areas also tend to have smaller source loads for the same reasons. However, in both natural and rural areas, significant bacteria sources can still sometimes exist. For example, natural areas could include dense waterfowl areas, and rural areas could include confined animal pens. Urban areas tend to produce larger bacteria loads. This is generally the result of high impervious cover, which increases the frequency and intensity of runoff events. It can also be the result of an increasing density in potential sources (leaking sewage collection systems, failing septic drainfields, pets, wildlife, etc.). Land use data for Caney Creek watershed are shown in Figure 7-9. As shown, the watershed includes a wide variety of land uses, ranging from forests, to rangeland, to small urban areas. The source of the data is USGS, 2001. Figure 7-9: Caney Creek Land Use #### 7.5.3 Wastewater Treatment Facilities Wastewater treatment facilities have the potential to contribute significant bacteria loads if complete disinfection is not achieved. These loads may be most noticeable under low flow conditions, during which some streams may be effluent dominated. However, it is also possible for treatment plants to contribute significant loads under wet weather conditions. This could be the case if increased loading due to stormwater inflow and infiltration results in poorer plant performance. Wastewater treatment plants in the Caney Creek watershed are presented in Table 7-5. This table includes the permitted flow, estimated current flow, and disinfection monitoring requirements for each facility. Facilities without monitoring requirements for disinfection (marked "N") are typically facilities without a significant potential bacteria source (i.e. industries or drinking water treatment plants). Treatment facility discharge locations are shown in Figure 7-10. For this segment, the total permitted flow is approximately 4.7 MGD (7.3 cfs), and the total current effluent flow is approximately 1.8 MGD (2.8 cfs). (For facilities with unknown current flows, half the permitted flow was used.) Wastewater treatment facilities can represent a significant portion of the segment's baseflow (which could be defined as the 50th to 99th percentile range of the FDC). At the 50th percentile flow, current effluent discharges account for about 5% of total stream flow, while at the 99th percentile, they account for about 16% of the total flow. Table 7-5: Caney Creek Wastewater Treatment Facility Summary | TCEQ Permit | EPA Permit | • | | Permitted | Current | Disinfection | |-------------|------------|--|------------|------------|------------|--------------| | Number | Number | Name | County | Flow (MGD) | Flow (MGD) | Monitoring | | 01497-001 | TX0127710 | The Signorelli Co. | Montgomery | 0.60 | 0.01 | С | | 11020-001 | TX0056685 | City of New Waverly | Walker | 0.09 | unk | С | | 11020-002 | TX0087831 | City of New Waverly | Walker | unk | unk | unk | | 11715-001 | TX0068659 | Texas National MUD WWTF | Montgomery | 0.08 | 0.01 | С | | 12204-001 | TX0083216 | Conroe ISD | Montgomery | 0.02 | 0.02 | С | | 12205-001 | TX0083208 | Conroe ISD | Montgomery | 0.02 | 0.007 | С | | 12274-001 | TX0084638 | New Caney MUD | Montgomery | 1.06 | 0.67 | С | | 12621-001 | TX0091677 |
Martin Realty & Land, Inc | Montgomery | 0.15 | unk | С | | 12670-001 | TX0092517 | Mountain Man, Inc./ Ranch Utilities, LP2 | Montgomery | 0.18 | 0.05 | С | | 13690-001 | TX0111473 | Conroe ISD | Montgomery | 0.10 | 0.09 | С | | 14029-001 | TX0117145 | LGI Housing, LLC/ Quadvest, LP6 | Montgomery | 0.60 | 0.12 | С | | 14081-001 | TX0118311 | Martin Realty & Land, Inc. | Montgomery | 0.15 | 0 | С | | 14083-001 | TX0118818 | White Oak Developers, Inc. | Montgomery | 0.20 | unk | F | | 14116-001 | TX0071412 | Montgomery County MUD #24 | Montgomery | unk | unk | unk | | 14285-001 | TX0124281 | C&R Water Supply, Inc. | Montgomery | 0.30 | 0.09 | С | | 14379-001 | TX0125300 | East Montgomery Co MUD #3 | Montgomery | 0.08 | 0.04 | unk | | 14559-001 | TX0127094 | Whitestone Houston Land, Ltd. | Montgomery | 0.90 | unk | С | | 14694-001 | TX0128651 | Elan Development, LP | Montgomery | 0.18 | 0 | С | C=chlorine residual, F=fecal coliform, N=none, unk=unknown Figure 7-10: Caney Creek Treatment Facility Discharge Locations #### 8.0 PEACH CREEK, SEGMENT 1011 # 8.1 TCEQ ASSESSMENT FOR 303(d) LIST When determining compliance with state water quality criteria, TCEQ often divides segments into various assessment units (AU) to refine the spatial resolution of the impairment. Assessment units for Peach Creek are shown in Table 8-1. The information included in Table 8-1 is from the *Draft 2006 Texas Water Quality Inventory*, which was used as a basis for the *Draft 2006 Texas 303(d) List* (TCEQ, 2007). The period of record used by TCEQ in this assessment was 1 December 1999 through 30 November 2004. The "# Exceed" column provides the number of samples that exceeded the grab sample criterion for *E. coli* (394 org/100mL). Generally, TCEQ allows up to 25% of the samples to exceed the grab sample criterion before considering the reach impaired. The "Geo. Mean" column provides the geometric mean of the *E. coli* samples. If this number exceeds the criterion of 126 org/100mL, then the reach is considered impaired. As shown, one of the two assessment units was found to be impaired for *E. coli*. Table 8-1: Peach Creek Assessment Units and Results | Assessment
Unit | Segment Name | Assessment Unit Description | #
Samples | #
Exceed | Geo.
Mean | Impaired | |--------------------|--------------|---|--------------|-------------|--------------|----------| | 1011_01 | Peach Creek | Upper segment boundary to US Hwy 59 | 47 | 9 | 105 | No | | 1011_02 | Peach Creek | US Hwy 59 to confluence
with Caney Creek | 81 | 20 | 235 | Yes | The locations of the assessment units are displayed in Figure 8-1. Also shown in this figure are water quality sampling locations where *E. coli* data have been regularly collected. Generally, each assessment unit corresponds to one or more sampling sites. Figure 8-1: Peach Creek Study Area ### 8.2 SUMMARY OF E. COLI DATA BY STATION With very few exceptions, *E. coli* sampling did not begin until 2000. (Before 2000, samples were only analyzed for fecal coliform.) Table 8-2 provides an inventory of active *E. coli* sampling sites, and Table 8-3 provides a summary of the currently available *E. coli* data for these sites. Table values in bold are indicative of exceedances of state criteria. It is important to note that the data in this table typically cover a longer period of record than that used in the *Draft* 2006 Texas Water Quality Inventory. Table 3-2: Peach Creek Sampling Sites | TCEQ# | TCEQ Description | USGS# | |-------|--|----------| | 11338 | PEACH CREEK AT SH 105 WEST OF CLEVELAND | 08070900 | | 16625 | PEACH CREEK IMMEDIATELY UPSTREAM OF OLD HWY 105 | | | 11337 | PEACH CREEK BRIDGE AT FM 2090 IN SPLENDORA | 08071000 | | 11336 | PEACH CREEK AT FM 1485 | 08071100 | | 17746 | PEACH CREEK AT LAKE HOUSTON STATE PARK FOOTBRIDGE
1.09 KM DOWNSTREAM OF FM 1485 | | Table 3-3: Peach Creek E. coli Data Summary | Tuoie | o o. reaci | T CTCCR E. | con Bata | Summary | | |-----------------|------------|------------|----------|---------|--------| | Station | 11338 | 16625 | 11337 | 11336 | 17746 | | Reach | Peach | Peach | Peach | Peach | Peach | | Begin Date | Dec-02 | Jun-00 | Dec-02 | Jun-00 | Oct-03 | | End Date | Jun-04 | Apr-05 | Jun-04 | May-05 | Jul-06 | | Count | 9 | 41 | 9 | 93 | 10 | | 75th Percentile | 140 | 180 | 150 | 320 | 354 | | Geometric mean | 86 | 118 | 141 | 236 | 189 | | 25th Percentile | 55 | 40 | 88 | 100 | 83 | # 8.3 SPATIAL AND TEMPORAL ANALYSIS Spatial analysis can be helpful when attempting to locate sources of bacteria. Figure 8-2 shows the variation in bacteria concentrations from upstream to downstream across the watershed. As shown, bacteria concentrations generally increase from upstream to downstream across the watershed. Temporal analysis can be useful for determining the emergence or diminution of bacteria sources over time. Figures 8-3 and 8-4 present bacteria concentrations over time for stations 16625 and 11376. No clear significant temporal trends were observed. Figure 8-2: Peach Creek Spatial Analysis Figure 8-3: Temporal Analysis: Peach Creek at Old Highway 105 (#16625) Figure 8-4: Temporal Analysis: Peach Creek at FM 1485 (#11336) #### 8.4 LOAD DURATION CURVE DEVELOPMENT ### **8.4.1 Flow Duration Curves** A flow duration curve (FDC) is a graph of daily average streamflow versus the percent of days that the average streamflow value is exceeded. FDCs are typically developed using daily flow data collected at USGS gaging stations. For this project, the desired period of record for FDC development is 1987-2006. Table 8-4 identifies the active USGS flow gaging station in the segment for this time period. The location of this gage is presented in Figure 8-1. The flow duration curve for this station is presented in Figure 8-6. | | Table 8-4: Peac | h Creek USGS Flo | ow Gages | |----------|-----------------|------------------|--------------------| | Station | Stream | Location | Available FDC data | | 08071000 |) Peach Creek | near Cleveland, | 1999-2006 | Figure 8-5: Peach Creek Flow Duration Curve To create load duration curves, each water quality sampling site must have a complete flow record. Since most sampling sites do not have a corresponding USGS flow gage, these records have to be synthesized using nearby gages and drainage area adjustment factors. # **8.4.2** Load Duration Curves This section presents load duration curves for various water quality sampling stations throughout the study area. The bacterial loads are the product of each grab sample bacteria concentration and the corresponding mean daily streamflow rate. Bacteria standards are represented in these figures by curves for the geometric mean and grab sample criteria, 126 org/100mL and 394 org/100mL, respectively. Load duration curves are presented from upstream to downstream along the main segment, and then along tributaries. An LDC for Peach Creek at Old Highway 105 (16625) is presented in Figure 4-8. The greatest exceedances typically occur under high flow conditions, but high bacteria levels are sometimes observed under lower flow conditions as well. Therefore, it is possible that both wet and dry weather bacteria sources contribute significantly to this station. Additional sampling could provide better source characterization at this station. An LDC for Peach Creek at FM 1485 (Stations 11336 and 17746) is presented in Figure 8-8. The greatest exceedances typically occur under high flow conditions, but high bacteria levels are often observed under lower flow conditions as well. Therefore, it is possible that both wet and dry weather bacteria sources contribute significantly to this station. Figure 8-6: LDC for Peach Creek at Old Highway 105 (#16625) Figure 8-7: LDC for Peach Creek at FM 1485 and Foot Bridge (#11336, 17746) #### 8.5 DISCUSSION OF POTENTIAL SOURCES There have historically been two general classifications of sources of pollutants that were distinguished by the mechanism of release to a receiving stream. Sources that were released via a pipe or defined outfall were labeled as "point sources", while sources that were diffuse in nature were labeled as "nonpoint sources". Thus, "point sources" of bacteria would usually include facilities such as wastewater treatment plants. Traditional "nonpoint sources" would include, but not be limited to, leaking sewer systems, failing septic systems, pets, wildlife, livestock, and general urban and rural runoff. However, TMDLs do not always adhere to the traditional usage of the terms point source and nonpoint source. In accordance with EPA guidance, TMDLs are developed to establish two categories of allocations: wasteload allocations (WLAs) and load allocations (LA). EPA has determined that any source flowing into a waterway and covered by a permit should be classified as a waste load and be included in the WLA category. Thus, the "waste load" category would include not only facilities such as wastewater treatment plants, but also discharges of runoff from municipal areas covered under stormwater permits (MS4s). Remaining diffuse sources of pollutants that are not covered by permit are defined as "loads" and ultimately are subject to development of the LA. This would include runoff from rural or urban areas outside of permitting jurisdictions. # **8.5.1** Upstream Sources There are no waterbodies upstream of Peach Creek. #### **8.5.2** Runoff Sources Runoff sources of bacteria can fall into either the waste load or load category, depending on the presence or absence of a permit allowing for discharge into a waterway. Runoff sources of bacteria can be anticipated based on land use. For example, it has been observed that natural areas typically produce the smallest runoff source loads. This is because they tend to produce the least runoff volume and tend to have the lowest density of fecal sources. Rural (farm and ranch)
areas also tend to have smaller source loads for the same reasons. However, in both natural and rural areas, significant bacteria sources can still sometimes exist. For example, natural areas could include dense waterfowl areas, and rural areas could include confined animal pens. Urban areas tend to produce larger bacteria loads. This is generally the result of high impervious cover, which increases the frequency and intensity of runoff events. It can also be the result of an increasing density in potential sources (leaking sewage collection systems, failing septic drainfields, pets, wildlife, etc.). Land use data for the Peach Creek watershed are shown in Figure 8-10. As shown, the watershed includes a wide variety of land uses, ranging from wetlands, to forests, to rangeland, to urban areas. The source of the data is USGS, 2001. Figure 8-8: Peach Creek Land Use ### **8.5.3** Wastewater Treatment Facilities Wastewater treatment facilities have the potential to contribute significant bacteria loads if complete disinfection is not achieved. These loads may be most noticeable under low flow conditions, during which some streams may be effluent dominated. However, it is also possible for treatment plants to contribute significant loads under wet weather conditions. This could be the case if increased loading due to stormwater inflow and infiltration results in poorer plant performance. Wastewater treatment plants in the Peach Creek watershed are presented in Table 8-5. This table includes the permitted flow, estimated current flow, and disinfection monitoring requirements for each facility. Facilities without monitoring requirements for disinfection (marked "N") are typically facilities without a significant potential bacteria source (i.e. industries or drinking water treatment plants). Treatment facility discharge locations are shown in Figure 8-9. For this segment, the total permitted flow is approximately 2.7 MGD (4.2 cfs), and the total current effluent flow is approximately 0.9 MGD (1.3 cfs). (For facilities with unknown current flows, half the permitted flow was used.) Wastewater treatment facilities can represent a significant portion of the segment's baseflow (which could be defined as the 50^{th} to 99^{th} percentile range of the FDC). At the 50^{th} percentile flow, current effluent discharges account for about 3% of total stream flow, while at the 99^{th} percentile, they account for about 10% of the total flow. Table 8-5: Peach Creek Wastewater Treatment Facility Summary | TCEQ Permit | EPA Permit | | | Permitted | Current | Disinfection | |-------------|------------|-------------------------------|------------|------------|------------|--------------| | Number | Number | Name | County | Flow (MGD) | Flow (MGD) | Monitoring | | 01386-001 | TX0078344 | Montgomery Co MUD #16 | Montgomery | 0.18 | 0.05 | С | | 11143-001 | TX0082511 | Splendora ISD | Montgomery | 0.04 | 0.02 | С | | 11143-002 | TX0117463 | Splendora ISD | Montgomery | 0.04 | 0.009 | С | | 11993-001 | TX0077241 | City of Woodbranch Village | Montgomery | 0.13 | 0.06 | С | | 13389-001 | TX0102512 | City of Splendora | Montgomery | 0.30 | 0.10 | С | | 13638-001 | TX0093220 | Roman Forest Consolidated MUD | Montgomery | 0.32 | 0.17 | С | | 14311-001 | TX0124583 | East Montgomery Co MUD #4 | Montgomery | 0.75 | 0 | С | | 14536-001 | TX0126853 | Flying J Inc. | Montgomery | 0.05 | 0.003 | С | | 14560-001 | TX0127108 | Whitestone Houston Land, Ltd. | Montgomery | 0.90 | unk | С | | | | | | | | | C=chlorine residual, F=fecal coliform, N=none, unk=unknown Figure 8-9: Peach Creek Treatment Facility Discharge Locations #### APPENDIX: WASTEWATER TREATMENT FACILITY INVENTORY This appendix includes information from TPDES discharge permits and from the EPA's online *Envirofacts* Data Warehouse (http://oaspub.epa.gov/enviro/ef_home2.water). These two data sources provided similar information, but the TPDES permits included more detailed information on the locations of discharge. The EPA database, on the other hand, provided self-reporting data and records of permit violations not found in TPDES permits. Both data sources were missing records for some of the dischargers. The information in this appendix is useful for determining discharge location, discharge route, ownership, type of facility, and effluent characteristics. Some dischargers are required to monitor and self-report effluent fecal coliform levels on a monthly basis. The reported data can be in the form of a monthly average, a monthly geometric mean, a maximum 7-day average, or a maximum single grab sample. These monitoring results, as found in the EPA's online database, are included at the back of this appendix. Also included are the monthly flow data for these sources. The data provide an indication of the magnitude of bacterial loads from these sources. # Wastewater Treatment Facility Inventory - Column Descriptions: | Column Name | Column Description | |----------------------------|--| | NPDES ID | From EPA NPDES ID, used to sort data | | TCEQ Seg. # | TCEQ stream segment # | | TCEQ Permit Number | TCEQ's identification number for discharge | | EPA NPDES Number | EPA's identification number for discharger | | Name | Name of discharging entity | | Plant Location | Location of discharge facility | | County | County of discharge facility | | Discharge Route | Description of discharge flow path | | Permit Information Source | Available source of information (TCEQ permit and/or EPA database) | | Status Notes | Current status of the facility (if blank, the plant is believed to be active) | | Seasonal Limits | Seasonal periods for effluent limits (may apply to the following 5 columns) | | Permitted flow [MGD] | Daily average flow limit | | CBOD [mg/l] | Daily average CBOD limit, (lower values indicate higher level of treatment) | | TSS [mg/l] | Daily average TSS limit, (lower values indicate higher level of treatment) | | NH3N [mg/l] | Daily average ammonia limit, (lower values indicate higher level of treatment) | | Chlorine Residual [mg/l] | Minimum chlorine residual, (indicates that chlorine is used as disinfectant) | | Fecal Coliform [org/100mL] | Fecal coliform effluent limit (daily average unless noted otherwise) | | Address 1 | Line 1 of owner's address | | Address 2 | Line 2 of owner's address | | City/State/ Zip | City, state, and zip code of owner | | Flow Date | Date of last recorded flow statistics | | Flow-effluent gross | Average flow for last day | | Flow-annual | Average flow for last year | | Disinfection Violations | Disinfection-related violations found in EPA database | | Other comments | Comments | | NPDES ID | TCEQ
Seg. # | TCEQ
Permit
Number | EPA NPDES
Number | Name | Plant Location | County | Discharge Route | Permit
Information
Source | Status
Notes | Seasonal
Limits | Permitted
flow [MGD] | CBOD
[mg/l] | | NH3N
[mg/l] | Chlorine
Residual
[mg/l] | Fecal
Coliform
[org/100mL] | Address 1 | Address 2 | City/State/
Zip | Flow Date | Flow- effluent gross | Flow- annual | Disinfection
Violations | Other comments | |----------|----------------|--------------------------|---------------------|--------------------------------------|---|------------|--|---------------------------------|-----------------|--------------------|-------------------------|----------------|--------|----------------|--------------------------------|----------------------------------|---|---|----------------------------------|-----------|----------------------|--------------|---|---| | 5592 | 1004 | 00584-000 | TX0005592 | Huntsman
Petrochemical Corp | 5 mi east of City of
Conroe, 0.25 mi south of
FM 1485, 0.5 mi west of
City of Cut-N-Shoot | Montgomery | to West Fork Crystal
Creek, to Crystal Creek,
to West Fork San Jacinto
River | TCEQ, EPA | | | 0.75 | report | report | report | na | na | 5451 Jefferson
Chemical Rd | | Conroe, TX
77301 | 28-Feb-07 | 0.384 | na | 0 | | | 20206 | 1004 | 11097-001 | TX0020206 | City of Panorama
Village | North side of League
Line Road | Montgomery | to East Fork White Oak
Creek | EPA | | | 0.4 | 10 | 15 | 3 | 1 | na | 99 Hiwon Drive | | Panorama
Village, TX
77304 | 28-Feb-07 | 0.228 | na | 10/31/06,
minimum of .5 | | | 20974 | 1008 | 10908-001 | TX0020974 | Harris County WCID
#92 | northeast end of Bell
Chase Lane, 2 miles
east of the City of Spring | Harris | to Spring Creek | TCEQ, EPA | | | 0.7 | 10 | 15 | 3 | 1 | na | c/o Coats, Rose,
Yale, Ryman &
Lee PC | 1001 Fannin
Street | Houston, TX
77002 | 28-Feb-07 | 0.416 | na | 0 | | | 21211 | 1009 | 11024-001 | TX0021211 | Harris Co WCID
#119 | 2000 ft south of Spring
Cypress Rd, 5000 ft east
of intersection of Louetta
and Spring Cypress Rd | Harris | to Dry Gully, to Cypress
Creek | TCEQ, EPA | | | 0.995 | 7 | 15 | 2 | 1 | na | 1300 Post Oak
Blvd, Suite 1400 | | Houston, TX
77056 | 28-Feb-07 | 0.415 | na | 0 | | | 22055 | 1004 | 11395-001 | TX0022055 | Montgomery Co
MUD #15 | on Gleneagles Dr., 500 ft
north of Needham Rd | Montgomery | pipe to unmaed drainage
ditch, to unnamed trib, to
West Fork San Jacinto
River | TCEQ | | | 0.9 | 10 | 15 | 3 | 1 | na | c/o Young &
Brooks | 1415
Louisiana St,
5th floor | Houston, TX
77002 | | | | | | | 22268 | 1004 | 10008-002 | TX0022268 | City of Conroe |
north of confluence of
Lake Creek and San
Jacinto River, at end of
Old Magnolia Rd, 2.5 mi
west of IH 45 and 2.5 mi
south of FM 2845 | Montgomery | to West Fork San Jacinto
River | TCEQ, EPA | | | 10 | 10 | 15 | 2 | 1 | na | PO Box 3066 | | Conroe, TX
77305 | 28-Feb-07 | 6.1 | 5.972 | 0 | There were pretreatment audits | | 22381 | 1008 | 10616-001 | TX0022381 | City of Tomball | 615 Eaast Huffsmith,
1400 ft north of
intersection of Neal
Street and East
Huffsmith Rd in City of
Tomball | Harris | to Bogs Gully, to Spring
Creek | TCEQ, EPA | | | 1.5 | 10 | 15 | 3 | 1 | na | 401 Market St,
Suite C | | Tomball, TX
77375 | 31-Jan-07 | 0.926613 | 0.673 | 0 | | | 23612 | 1009 | 10783-001 | TX0023612 | Inverness Forest ID | north side of Cypress
Creek, 800 ft east of the
Hardy Rd bridge
crossing Cypress Creek | Harris | to Cypress Creek | TCEQ, EPA | | | 0.5 | 10 | 15 | 3 | 1 | na | c/o Johnson,
Radcliffe, Pertroy
& Bobbit PLLC | 1001
McKinney
Street, Suite
1000 | Houston, TX
77002 | 31-Oct-06 | 0.198 | na | 0 | | | 24759 | 1008 | 11001-001 | TX0024759 | Southern
Montgomery County
MUD | 852 Rayford Road, 3500
feet north of Spring
Creek and 4000 feet
east of IH 45 | Montgomery | Montgomery Co.
Drainage District #6 then
to Spring Creek | EPA | | | 2 | 10 | 15 | 3 | 1 | na | 25212 Interstate
Highway 45 | | Spring, TX
77386 | 30-Apr-07 | 1.007 | 0.972 | 0 | | | 25399 | 1008 | 10857-001 | TX0025399 | Montgomery Co
WCID #1 | 11 mi south of the City of
Conroe, 3 mi west of IH
45 crossing of Spring
Creek and at the south
end of Glen Loch Drive
in the Timber Ridge-
Timber Lake subdivision | Montgomery | to Spring Creek | TCEQ, EPA | | | 0.42 | 10 | 15 | 3 | 1 | na | PO Box 7690 | | The
Woodlands,
Texas 77387 | 28-Feb-07 | 0.24005 | na | 0 | | | 25674 | 1004 | 10978-001 | TX0025674 | River Plantation
MUD | 1.5 mi downstream from
ih 45 bridge, on north
bank of West Fork San
Jacinto River | Montgomery | to unnamed trib, to West
Fork San Jacinto River | TCEQ, EPA | | | 0.6 | 10 | 15 | 3 | 1 | na | PO Box 747 | | Conroe, TX
77305 | 28-Feb-07 | 0.4065 | na | 0 | | | 26221 | 1008 | 11574-001 | TX0026221 | Spring Creek UD | 1 mile west of
intersection of Riley
Fuzzel Rd and Rayford
Rd | Montgomery | to Montgomery County
Drainage Distric #6
Channle III F, to Spring
Creek | TCEQ, EPA | | | 0.93 | 10 | 15 | 3 | 1 | na | c/o Smith,
Murdaugh, Little
& Bonham, LLP | 1100
Louisiana
Street, Suite
400 | Houston, TX
77002 | 30-Nov-06 | 0.439 | na | 0 | | | 26255 | 1008 | 11404-001 | TX0026255 | Dowdell PUD | northwest of intersection
of Kuykendahl Rd and
Dowdell Rd, 1 mile east
of FM 2920 and 7 miles
west of IH 45 | Harris | to Willow Creek to Spring
Creek | TCEQ, EPA | | | 0.95 | 10 | 15 | 3 | 1 | na | c/o Smith,
Murdaugh, Little
& Bonham, LLP | 1100
Louisiana
Street, Suite
400 | Houston, TX
77002 | 31-Mar-07 | 0.234 | na | 0 | | | 26450 | 1009 | 10528-001 | TX0026450 | Harris Co. FWSD # 52 | 2.75 mi northeast of
intersection of FM 1960
and FM 149 | Harris | to Cypress Creek | TCEQ, EPA | | | 0.7 | 10 | 15 | 3 | 1 | na | c/o Lockwood,
Andres, &
Newnam, Inc. | 2925
Briarpark Dr,
5th Floor | Houston, TX
77042 | 31-Mar-07 | 0.32 | na | 0 | | | 28169 | 1003 | 01905-000 | TX0028169 | New Waverly
Ventures Ltd Co | 3 mi north of City of New
Waverly, east side of US
75 | Walker | to drainage ditch, to
Gourd Creek, to Winters
Bayou, to East Fork San
Jacinto River | TCEQ, EPA | | | variable | na | na | na | na | 400 grab | PO Box 368 | | New Waverly,
TX 77358 | 31-Jan-07 | 0.101648 | na | f.coliform:
07/31/06- 927
(max limit
400); many
overdue
violations | see: separate
worksheet for
additional data | | NPDES ID | TCEQ
Seg. # | TCEQ
Permit
Number | EPA NPDES
Number | Name | Plant Location | County | Discharge Route | Permit
Information
Source | Status
Notes | Seasonal
Limits | Permitted
flow [MGD] | CBOD
[mg/l] | TSS
[mg/l] | NH3N
[mg/l] | Chlorine
Residual
[mg/l] | Fecal
Coliform
[org/100mL] | Address 1 | Address 2 | City/State/
Zip | Flow Date | Flow- effluent gross | Flow- annual | Disinfection
Violations | Other comments | |----------|----------------|--------------------------|---------------------|----------------------------------|--|------------|---|---------------------------------|-----------------|----------------------|-------------------------|----------------|---------------|----------------|--------------------------------|----------------------------------|---|---|----------------------|-----------|----------------------|--------------|--|---| | 31305 | 1009 | 14526-001 | TX0031305 | Spring ISD | 950 Wunsche Loop
Road; 1.2m east of IH | Harris | to Wunsche Ditch, to
Lemm Gully, to Cypress
Creek | EPA | | | 0.03 | 10 | 15 | 3 | 1 | na | 15330B
Kuykendahl
Road | | Houston, TX
77090 | 31-May-06 | 0.001 | na | freq. overdue;
violations since
05/31/06 | | | 32476 | 1009 | 01310-001 | TX0032476 | City of Waller | 102 Walnut Street, 4500
ft southeast of
intersection of US 290
and FM 362 | Waller | to unnamed trip, to Mound
Creek, to Cypress Creek | TCEQ | | | 0.9 | 7 | 15 | 2 | 1 | na | PO Box 239 | | Waller, TX
77484 | | | | | | | 34681 | 1004 | 02365-000 | TX0034681 | Maverick Tube, L.P. | south side and adjecent to RR | Montgomery | to unnamed ditch to
unnamed trib | EPA | | | 0.11 | na | na | na | na | na | Po Box 659 | | Conroe, TX
77305 | 30-Apr-07 | 0.028 | na | does not report
chlorine | | | 42099 | 1008 | 13648-001 | TX0042099 | Encanto Real UD | 3.25 mi northwest of
intersection of IH 45 and
Spring-Stuebner Rd | Harris | to pipe, to Spring Creek | TCEQ, EPA | | | 0.25 | 10 | 15 | 3 | 1 | na | c/o David M.
Marks, PC | 2001 Kirby Dr,
Suite 1111 | Houston TX
77019 | 28-Feb-07 | 0.077 | na | 0 | | | 46639 | 1009 | 11105-001 | TX0046639 | Bammel UD | south bank of Cypress
Creek, 6400 ft
downstream of crossing
of Cypress Creek by
Stuebner-Airline Rd. | Harris | to Cypress Creek | TCEQ, EPA | | mar-oct /
nov-feb | 2.6 | 7/10 | 15 | 2/3 | 1 | na | c/o Young &
Brooks | 1415
Louisiana St,
5th floor | Houston, TX
77002 | 28-Feb-07 | 0.948 | 1.06 | | | | 46663 | 1009 | 11215-001 | TX0046663 | Meadowhill Regional
MUD | 23102 Roseville Dr., 2
miles west of the
intersection of IH 45 and
FM 2920 | Harris | to HCFD k123-02-03, to
HCFD K124-02-00, to
Seals Gully, to Cypress
Creek | TCEQ, EPA | | apr-oct /
nov-mar | 2.4 | 7/10 | 12/15 | 2/3 | 1 | na | c/o Johnson,
Radcliffe, Pertroy
& Bobbit PLLC | 1001
McKinney
Street, Suite
1000 | Houston, TX
77002 | 31-Jan-07 | 0.625129 | 0.519 | 0 | | | 46671 | 1009 | 11044-001 | TX0046671 | Memorial Hills UD | south of Cypress Creek,
600 ft north east of the
intersection of FM 1960
and Hardy Rd. | Harris | to HCFD K-117-00-00, to
Cypress Creek | TCEQ, EPA | | | 0.5 | 10 | 15 | 3 | 1 | na | c/o Smith,
Murdaugh, Little
& Bonham, LLP | 1100
Louisiana
Street, Suite
400 | Houston, TX
77002 | 31-Mar-07 | 0.188 | na | 0 | | | 46680 | 1009 | 11142-002 | TX0046680 | Timber Lane UD | 0.5 miles southwest of
the intersection of Wood
River dr and Aldine-
Westfield Rd, 2.75 mi
northeast of intersection
of FM 1960 and IH 45 | Harris | to Schultz Gully, to
Cypress Creek | TCEQ, EPA | | mar-oct /
nov-feb | 2.62 | 7/10 | 15 | 2/3 | na | 200 | c/o Smith,
Murdaugh, Little
& Bonham, LLP | 1100
Louisiana
Street, Suite
400 | Houston, TX
77002 | 31-Dec-06 | 0.924387 | 0.929 | Fecal coli
measurements | see: separate
worksheet for
additional data | | 46701 | 1009 | 11089-001 | TX0046701 | Prestonwood Frest
UD | 14210 Prestonwood
Forest Dr., 3100 ft east
of intersection of
Cypress Creek and SH
249, 9 mi southeast of
City of Tomball | Harris | to Cypress Creek | TCEQ, EPA | | apr-oct /
nov-mar | 0.95 | 7/10 | 15 | 2/3 | 1 | na | c/o Young &
Brooks | 1415
Louisiana St,
5th floor | Houston, TX
77002 | 28-Feb-07 | 0.322 | na | 0 | | | 46710 | 1009 | 10955-001 | TX0046710 | Harris County WCID
#116 | 5335 Strack Road; 5000
feet west of Strack Road
and Stuebner-Airline
Road | Harris | to Cypress Creek | EPA | | Apr-Oct/
Nov Mar | 1.3 | 7/10 | 15 | 2/3 | 1 | na | 5135 Cobles
Corner | | Houston, TX
77069 | 31-Mar-07 | 0.637 | 0.652 | 01/31/05,
02/28/05-
minimums of
.98, .9 | | | 46728 | 1009 | 11141-001 | TX0046728 | Treschwig Joint
Powers Board | north bank of Cypress
Creek, 1 mile north of
FM 1960 and 2.5 mi
easth of Mo Pac railroad | Harris | to Cypress Creek | TCEQ, EPA | | apr-oct /
nov-mar | 2 | 7/10 | 15 | 2/3 | 1 | na | c/o Young &
Brooks | 1415
Louisiana St,
5th floor | Houston, TX
77002 | 31-Mar-07 | 1.218 | 1.201 | 0 | | | 46736 | 1009 | 11444-001 | TX0046736 | Harris County WCID
#99 | North Cypress Creek,
4600 ft. east of IH-45 | Harris | to Cypress Creek | EPA | | | 0.225 | 10 | 15 | 3 | 1 | na | PO Box 11750 | | Springn, TX
77391 | 30-Apr-07 | 0.089 | na | 6/30/2005-
minimum of
.02 | | | 46744 | 1009 | 11314-001 | TX0046744 | Aqua Texas, Inc | 2 mi northwest of
intersection of IH 45 and
FM 1960 | Harris | to Cypress Creek | TCEQ, EPA | | | 0.4 | 10 | 15 | 3 | 1 | na | 2211 Louetta Rd | |
Spring, TX
77388 | | | | | No
measurements
reported; pipe
active | | 46761 | 1009 | 11081-001 | TX0046761 | Ponderosa Joint
Powers Agency | 17940 Butte Creek Drive
in Houston, south of
Cypress Creek, 2.3
miles west of IH 45 | Harris | to Cypress Creek | TCEQ, EPA | | | 4.87 | 7 | 15 | 2 | 1 | na | 17940 Butte
Creek Drive | | Houston, TX
77090 | 31-Jan-07 | 3.00123 | 2.897 | 0 | | | 46779 | 1009 | 11366-001 | TX0046779 | Cypress-Klein UD | Cypresswood Blvd, 1500
ft north of Cypress
Creek, 3500 ft north of
intersection of Steubner-
Airline Rd. and Strack
Rd | Harris | to Cypress Creek | TCEQ, EPA | | | 0.7 | 10 | 15 | 3 | 1 | na | 1001 Fannin St.,
Suite 800 | | Houston, TX
77002 | 30-Apr-07 | 0.314 | na | 0 | | | 46817 | 1009 | 11409-001 | TX0046817 | Kleinwood Joint
Powers Board | 15903 Squyres | Harris | to Cypress Creek | TCEQ, EPA | | apr-oct /
nov-mar | 5 | 7/10 | 15 | 2/3 | 1 | na | c/o Young &
Brooks | 1415
Louisiana St,
5th floor | Houston, TX
77002 | 31-Mar-07 | 2.119 | 2.162 | 0 | | | NPDES ID | TCEQ
Seg. # | TCEQ
Permit
Number | EPA NPDES
Number | Name | Plant Location | County | Discharge Route | Permit
Information
Source | Status
Notes | Seasonal
Limits | Permitted
flow [MGD] | CBOD
[mg/l] | | NH3N
[mg/l] | Chlorine
Residual
[mg/l] | Fecal
Coliform
[org/100mL] | Address 1 | Address 2 | City/State/
Zip | Flow Date | Flow- effluent gross | Flow- annual | Disinfection
Violations | Other comments | |----------|----------------|--------------------------|---------------------|--|--|------------|--|---------------------------------|-----------------|----------------------|-------------------------|----------------|----|----------------|--------------------------------|----------------------------------|---|--|----------------------------------|-----------|----------------------|--------------|---|--| | 46833 | 1009 | 11084-001 | TX0046833 | Lake Forest Plant
Advisory Council | south of Cypress Creek,
0.5 mi west of SH 249
and 1.25 mi north of
Grant Road | Harris | to Cypress Creek | TCEQ, EPA | | nov-feb /
mar-oct | 2.76 | 10/7 | 15 | 3/2 | 1 | na | 14223 Lakewood
Drive | | Houston, TX
77070 | 30-Apr-07 | 1.803 | 1.331 | 0 | | | 46841 | 1009 | 11410-002 | TX0046841 | Charterwood MUD | 15820 Quill Dr.,
Houston, TX | Harris | to Pilot Gully to Cypress
Creek | TCEQ, EPA | | | 1.6 | 10 | 15 | 3 | 1 | na | c/o Coats, Rose,
Yale, Ryman &
Lee PC | 3 East
Greenway
Plaza, Suite
2000 | Houston, TX
77046 | 30-Apr-07 | 0.282 | na | 0 | | | 46868 | 1009 | 11267-001 | TX0046868 | Timberlake ID | 12702 Jarvis, south of
Cypress Creek, 3.2 mi
north of intersection of
US 290 and FM 1960 | Harris | to Harris Co Flood
Control Ditch k163-00-00,
to Cypress Creek | TCEQ, EPA | | | 0.4 | 10 | 15 | 3 | 1 | na | c/o Young &
Brooks | 1415
Louisiana St,
5th floor | Houston, TX
77002 | 31-Jan-07 | 0.257 | na | 0 | | | 47775 | 1009 | 11572-001 | TX0047775 | Pilchers Property LP/
Northland Joint
Venture ¹ | 700 ft east of IH 45 next
to Northland Shopping
Center, 1000 ft south-
southeast of intersection
of IH 45 and FM 2920 | Harris | to Wunsche Ditch, to
Lemm Gully, to Cypress
Creek | TCEQ, EPA | | | 0.06 | 10 | 15 | 3 | 1 | na | 7001 Preston
Road, Suite 200 | | Dallas, TX
75205 | 28-Feb-07 | 0.025 | na | 0 | | | 53473 | 1003 | 10766-001 | TX0053473 | City of Cleveland | south of SH 105, 0.5 mi
west of intersection of
SH 105 and US 59 | Liberty | to East Fork San Jacinto
River | TCEQ, EPA | | | 0.75 | 10 | 15 | 3 | 1 | na | 203 East Boothe
St. | | Cleveland,
TX 77327 | 28-Feb-07 | 0.4065 | na | 0 | | | 54186 | 1008 | 11401-001 | TX0054186 | San Jacinto River
Authority | north of Sawdust Rd, 2
miles west of IH 45 and
12 miles south of City of
Conroe | Montgomery | to Panther Branch, to
Spring Creek (001) or to
Lake B on a trib of
Panther Branch, to Spring
Creek (002) | TCEQ, EPA | | | 7.8 | 10 | 15 | 3 | 1 | na | 2436 Sawdust
Rd | | The
Woodlands,
Texas 77380 | | | | | No
measurements
reported | | 54291 | 2204 | 11583-001 | TX0054291 | Nueces Co. WCID # | at crossing of Banquete
Creek and Co. Rd. 40,
1.25 mi east of FM 666,
0.5 mi south of SH 44 | Nueces | to Banquete Creek, to
Petronilla Creek Above
Tidal | TCEQ, EPA | | | 0.1 | 10 | 15 | na | 1 | na | PO Box 157 | | Banquete, TX
78339 | 28-Feb-07 | 0.035 | na | 0 | Flow reading for
09/30/31 (.052);
Two not received
violations | | 55166 | 1009 | 11239-001 | TX0055166 | CNP UD | South bank of Cypress
Creek, 2700 ft west of IH
45 | Harris | to Cypress Creek | TCEQ, EPA | | | 2.5 | 11 | 25 | 5 | na | 200 | c/o Schwartz,
Page & Harding
LLP | 1300 Post
Oak Blvd,
Suite 1400 | Houston, TX
77056 | 30-Apr-07 | 0.896 | 0.856 | 1- (coliform,
fecal) 07/31/04 | Stopped chlorine
measurements in
2003 | | 56537 | 1008 | 11406-001 | TX0056537 | Harris Co. MUD #26 | 3500 ft. east of the
confluence of Spring
Creek and Cypress
Creek and 9400 ft. north
of fm 1960 | Harris | to Spring Creek | TCEQ, EPA | | | 1.5 | 10 | 15 | 3 | 1 | na | c/o Schwartz,
Page & Harding
LLP | 1300 Post
Oak Blvd,
Suite 1400 | Houston, TX
77056 | 31-Jan-07 | 0.656968 | 0.5417 | 0 | | | 56685 | 1010 | 11020-001 | TX0056685 | City of New Waverly | west bank of Chicken
Creek, 1600 ft south of
intersection of Chicken
Creek and IH 150 | Walker | to Chicken Creek, to Little
Caney Creek, to Caney
Creek | TCEQ, EPA | | | 0.088 | 10 | 15 | 3 | 1 | na | PO Box 753 | | New Waverly,
TX 77358 | | | | | No
measurements
reported; pipe
active | | 58530 | 1008 | 11630-001 | TX0058530 | Harris Co. MUD #1 | South side of London
Way Drive, 400 ft. east
of intersection of London
Way Dr. and Kuykendahl
Rd. | Harris | Metzler Creek to Cannon
Gully to Willow Creek to
Spring Creek | TCEQ, EPA | | | 1.5 | 10 | 15 | 3 | 1 | na | c/o Smith,
Murdaugh, Little
& Bonham, LLP | 1100
Louisiana
Street, Suite
400 | Houston, TX
77002 | 31-Dec-06 | 0.248 | na | 0 | | | 58548 | 1008 | 10910-001 | TX0058548 | Northampton MUD | 24235 Gosling Rd, on
north bank of Willow
Creek , 1200 feet
upstream of Gosling Rd
crossing of Willow Creek | Harris | to Willow Creek to Spring
Creek | TCEQ, EPA | | | 0.75 | 10 | 15 | 3 | 1 | na | 600 Jefferson
St., Suite 780 | | Houston, TX
77002 | 31-Dec-06 | 0.378 | na | 07/31/04:
reported .99
(minimum of
1.0) | | | 62049 | 1009 | 10962-001 | TX0062049 | Harris County WCID
#113 | 2 miles northeast of
intersection of US 290
and Telge Rd | Harris | to a HCFCDD, to Cypress
Creek | TCEQ, EPA | | | 0.3 | 10 | 15 | 3 | 1 | na | c/o Smith,
Murdaugh, Little
& Bonham, LLP | 1100
Louisiana
Street, Suite
400 | Houston, TX
77002 | 30-Apr-07 | 0.11 | na | 08/31/06:
reported .6;
09/30/03:
reported .89
(minimum of
1.0) | | | 63461 | 1004 | 11658-001 | TX0063461 | San Jacinto River
Authority | 2000 ft east of IH 45, 1.5
mi south of FM 1488 | Montgomery | to unnamed trib, to West
Fork San Jacinto River | TCEQ, EPA | | | 0.9 | 10 | 15 | 3 | na | 200 | c/o Manager,
Woodlands
Division | 2436 Sawdust
Rd | The
Woodlands,
TX 77380 | 28-Feb-07 | 0.464 | na | 0 | | | 66583 | 1002 | 10495-146 | TX0066583 | City of Houston | 4.5 miles east of US
Hwy 59 between Bear
Branch and Ben's
Branch, 7.75 mi.
northeast of the
intersection between FM
Road 1960 and US Hwy | Harris | to Bens Branch to Lake
Houston | TCEQ, EPA | | | 6.6 | 5 | 10 | 3 | na | 200 | 4545 Groveway | | Houston, TX
77087 | 31-Mar-07 | 4.724 | 5.09 | has fecal
coliform
measurements | see: separate
worksheet for
additional data | | NPDES ID | TCEQ
Seg. # | TCEQ
Permit
Number | EPA NPDES
Number | Name | Plant Location | County | Discharge Route | Permit
Information
Source | Status
Notes | Seasonal
Limits | Permitted
flow [MGD] | CBOD
[mg/l] | | NH3N
[mg/l] | Chlorine
Residual
[mg/l] | Fecal
Coliform
[org/100mL] | Address 1 | Address 2 | City/State/
Zip | Flow Date | Flow- effluent
gross | Flow- annual | Disinfection
Violations | Other comments | |----------|----------------|--------------------------|---------------------|--|---|------------|--|---------------------------------|-----------------------|----------------------|-------------------------|----------------|----|----------------|--------------------------------|----------------------------------|---|---|-------------------------|-----------|---|--------------|--------------------------------|-----------------------------| | 68659 | 1010 | 11715-001 | TX0068659 | Texas National MUD
WWTF | North of Camp Crk, 1.5
miles northeast INT | Montgomery | to Caney Creek | EPA | | |
0.075 | 10 | 15 | 3 | 1 | na | c/o Aqua
Management | PO Box 585 | Willis, TX
77383 | 31-Aug-06 | 0.011 | na | overdue since
08/31/06 | | | 68845 | 1004 | 10315-001 | TX0068845 | City of Willis | 200 yards west of US
Hwy 75 cross | Montgomery | to West Fork San Jacinto
River | EPA | | | 0.8 | 10 | 15 | 3 | 1 | na | PO Box 436 | | Willis, TX
77378 | 31-Mar-07 | 0.5712 | na | 0 | | | 69256 | 1004 | 11820-001 | TX0069256 | Lazy River ID | 7500 ft. southeast of the intersection of IH 45 and FM 1488, south of the City of Conroe | Montgomery | unnamed trib to West
Fork of San Jacinto River | TCEQ, EPA | | | 0.1 | 10 | 15 | 3 | 1 | na | c/o Smith,
Murdaugh, Little
& Bonham, LLP | 1100
Louisiana
Street, Suite
400 | Houston, TX
77002 | 28-Feb-07 | 0.055 | na | 0 | | | 71081 | 303 | 12275-001 | TX0071081 | Texas Utilities Mining
Co | 2.2 mi southeast of
intersectoin of IH 30 and
FM 1870 | Hopkins | to ponds, to unnmaed trib,
to Rock Creek, to White
Oak Creek, to
Sulphur/South Sulpher
River | TCEQ, EPA | | | 0.0026 | 20 | 20 | na | na | na | Energy Plaza | 1601 Bryan
Street | Dallas, TX
75201 | 31-Mar-07 | .0012 | na | 0 | | | 71412 | 1010 | 14116-001 | TX0071412 | Montgomery County
MUD #24 | • | Montgomery | | | No info.
Available | | unk | | | | | | | | | | | | | | | 71528 | 1008 | 11799-001 | TX0071528 | Harris Co. MUD #82 | 1.5 miles east of Aldine-
Westfield Rd. and 3
miles north of FM 1960
at 2400 Domino Rd. | Harris | to Harris Co. Flood
Control District Ditch to
Spring Creek | TCEQ, EPA | | | 2.2 | 10 | 15 | 3 | 1 | na | c/o Allen Boone
Humphries
Robinson LLP | 3200
Southwest
Freeway,
Suite 2600 | Houston, TX
77027 | 31-Jan-07 | 0.516 | 0.462 | 0 | | | 71609 | 1009 | 11814-001 | TX0071609 | Boys and Girls
Country of Houston | Houston, Inc. WWTF,
1.7 miles North US | Harris | HCFCD ditch to Little
Cypress Creek | EPA | | | 0.1 | 10 | 15 | 3 | 1 | na | Houston Inc. | 18806
Roberts Road | Hockley, TX
77447 | 28-Feb-07 | 0.017 | na | 0 | | | 71765 | 1003 | 11844-001 | TX0071765 | Forest Glen, Inc | 6 mi southeast of
intersection of US 190
and FM 2296 | Walker | to Johnson Creek, to East
Fork San Jacinto River | TCEQ, EPA | | | 0.04 | 10 | 15 | 3 | 1 | na | 34 Forest Glen | | Huntsville, TX
77340 | 31-Jul-06 | 0.009 | na | overdue since
07/31/06 | | | 72150 | 1009 | 11835-001 | TX0072150 | Bridgestone MUD | South bank of Seals
Gully, approximately
2000 feet upstream of
the intersection of Spring
Cypress Road and Seals
Gully | Harris | Seals Gully to Cypress
Creek | TCEQ, EPA | | | 2.5 | 7 | 15 | 2 | 1 | na | c/o Johnson,
Radcliffe, Pertroy
& Bobbit PLLC | 1001
McKinney
Street, Suite
1000 | Houston, TX
77002 | 31-Mar-07 | 0.924 | 0.846 | 0 | | | 72346 | 1009 | 11824-001 | TX0072346 | Northwest Harris
County MUD #5 | 14950 Cypress Green
Drive | Harris | to Cypress Creek | EPA | | | 0.8 | 7 | 15 | 2 | 1 | na | c/o Aquasource | 17815 East
Strack Drive | Spring, TX
77002 | 30-Apr-07 | 0.437 | na | 0 | | | 72354 | 1009 | 11832-001 | TX0072354 | Faulkey Gully MUD | | Harris | to Faulkey Gully to
Cypress Creek | TCEQ, EPA | | mar-oct /
nov-feb | 1.42 | 7/10 | 15 | 2/3 | 1 | Report | 13310 Louetta
Rd | | Cypress, TX
77429 | 30-Apr-07 | 0.631 | 0.67 | 0 | | | 72567 | 1009 | 11855-001 | TX0072567 | North Park PUD | 22971 Imperial Valley
Dr, 2200 ft east of IH 45
and 2400 ft north of FM
1960 | Harris | to pipe, to Cypress Creek | TCEQ, EPA | | apr-oct /
nov-mar | 1.31 | 7/10 | 15 | 2/3 | 1 | na | c/o Smith,
Murdaugh, Little
& Bonham, LLP | 1100
Louisiana
Street, Suite
400 | Houston, TX
77002 | 31-Mar-07 | 0.424 | 0.403 | 0 | | | 72702 | 1008 | 11871-001 | TX0072702 | City of Magnolia | northeast corner of
intersection of Arnold
Branch and Nichols
Sawmill Rd, 1.5 south of
intersection of FM 1774
and FM 1488 | Montgomery | to Arnold Branch, to Mink
Branch, to Walnut Creek,
to Spring Creek | TCEQ, EPA | | | 0.65 | 10 | 15 | 3 | 1 | na | PO Box 396 | | Magnolia, TX
77353 | 31-Mar-07 | 0.268 | na | 04/30/04-
minimum of
.95 | | | 73105 | 1009 | 11886-001 | TX0073105 | Six Flag Splashtown L.P. | 1400 feet east of Hwy 45
and 3000 feet south of
Spring | Harris | Wunsche Ditch to Lemm
Gully then to Cypress
Creek | EPA | | | 0.06 | 10 | 15 | 3 | 1 | na | 16337 Park Row | | Houston, TX
77084 | 28-Feb-07 | no charge;
last charge .002
on 09/30/06 | na | 0 | | | 73393 | 1009 | 11887-001 | TX0073393 | Grant Rd PUD | 11837 Meadow Sweet,
0.5 mi south of Grant Rd
near Kluge Rd corssing
of Little Cypress Creek | Harris | to HCFCDD L-103-00-00,
to Little Cypress Creek, to
Cypress Creek | TCEQ, EPA | | | 0.31 | 10 | 15 | 2 | 1 | na | c/o Bacon &
Wallace, LLP | 600 Jefferson
St, Suite 780 | Houston, TX
77002 | 31-Mar-07 | 0.165 | na | 0 | 1984: request for a hearing | | 73997 | 1004 | 11878-001 | TX0073997 | Evangelistic Temple | 2400 ft north-northwest
of intersection of US 59
and McClellan Rd, 250 ft
west of McClellan Rd | Montgomery | to West Fork San Jacinto
River | TCEQ, EPA | | | 0.008 | 10 | 15 | 3 | 1 | na | PO Box 2423 | | Humble, TX
77338 | | | | | | | 74217 | 1009 | 11900-001 | TX0074217 | Tina Lee Tilles DBA
Turk Brothers
Building | Farm Road 1960 &
Cypress Creek, S. | Harris | drainage ditch then to
Cypress Creek | EPA | | | 0.001 | 10 | 15 | 3 | 1 | na | DBA Turks
Brothers Building | 15219
Stuebner-
Airline Suite
49 | Houston, TX
77069 | 28-Feb-07 | 0.0004 | na | 0 | | | 74322 | 1009 | 11941-001 | TX0074322 | Harris Co MUD #58 | 1100 ft west of
Kuykendahl Rd, 2250 ft
south of FM 1960 | Harris | to HCFCDD K-128-00-00,
to Cypress Creek | TCEQ, EPA | | | 0.6 | 10 | 15 | 3 | 1 | na | c/o Young &
Brooks | 1415
Louisiana St,
5th floor | Houston, TX
77002 | 31-Mar-07 | 0.117 | na | 0 | | | 74632 | 1009 | 11925-001 | TX0074632 | Harris Co MUD #104 | 5500 ft west if IH 45, 2.1
mi northwest of
intersection of FM 1960
and IH 45 | Harris | to pipe, to Seals Gully, to
Cypress Creek | TCEQ, EPA | | | 0.6 | 10 | 15 | 3 | 1 | na | c/o Smith,
Murdaugh, Little
& Bonham, LLP | 1100
Louisiana
Street, Suite
400 | Houston, TX
77002 | 31-Mar-07 | 0.198 | na | 0 | | | NPDES ID | TCEQ
Seg. # | TCEQ
Permit
Number | EPA NPDES
Number | Name | Plant Location | County | Discharge Route | Permit
Information
Source | Status
Notes | Seasonal
Limits | Permitted
flow [MGD] | CBOD
[mg/l] | | NH3N
[mg/l] | Chlorine
Residual
[mg/l] | Fecal
Coliform
[org/100mL] | Address 1 | Address 2 | City/State/
Zip | Flow Date | Flow- effluent gross | Flow- annual | Disinfection
Violations | Other comments | |----------|----------------|--------------------------|---------------------|--------------------------------|---|------------|---|---------------------------------|-----------------|----------------------|-------------------------|----------------|----|----------------|--------------------------------|----------------------------------|--|---|-------------------------------|-----------|----------------------|--------------|--|----------------| | 75159 | 1009 | 11912-002 | TX0075159 | Northwest Harris Co
MUD #10 | 1300 ft north of
intersection of Spring-
Cypress Rd and Dry
Creek | Harris | to HCFCDD K-145-01-00,
to Dry Creek, to Cypress
Creek | TCEQ, EPA | | | 1.5 | 7 | 15 | 2 | 1 | na | c/o Smith,
Murdaugh, Little
& Bonham, LLP | 1100
Louisiana
Street, Suite
400 | Houston, TX
77002 | 30-Apr-07 | 0.43 | 0.481 | 0 | | | 75183 | 1009 | 11913-001 | TX0075183 | Northwest Freeway
MUD | .75 mi north northwest of
intersection of Becker
Rd and US 290 | Harris | to HCFCDD L117-01-00,
to Little Cypress Creek, to
Cypress Creek | TCEQ, EPA | | | 0.45 | 10 | 15 | 3 | 1 | na | c/o Schwartz,
Page & Harding
LLP | 1300 Post
Oak Blvd,
Suite 1400 | Houston, TX
77056 | 28-Feb-07 | 0.151 | na | 0 | | | 75221 | 1009 | 14030-001 | TX0075221 | Northwest Harris Co
MUD #9 | 11023 Regency Green
Dr, .25 mi west of Jones
Rd and .33 mi south of
Grant Rd | Harris | to HCFCDD K-143-00-00,
to Cypress Creek | TCEQ, EPA | | | 1.5 | 7 | 15 | 2 | 1 | na | 1100 Louisiana
Street, Suite 400 | | Houston, TX
77002 | 28-Feb-07 | 0.469 | 0.51 | 0 | | | 75671 | 1009 | 11933-001 | TX0075671 | Woodcreek MUD | 3400 ft southwest of
intersection of Aldine-
Westfield Rd and FM
1960 | Harris | to Turkey Creek, to
Cypress Creek | TCEQ, EPA | | | 0.6 | 10 | 15 | 3 | 1 | na | c/o Bacon &
Wallace, LLP | 600 Jefferson,
Suite 780 | Houston, TX
77002 | 31-Dec-06 | 0.231 | na | 0 | | | 75680 | 1004 | 11580-001 | TX0075680 | Town of Woodloch | 2.75 miles east-
northeast of the
intersection of IH 45 &
Needham | Montgomery | to West Fork San Jacinto
River | EPA | | | 0.12 | 10 | 15 | 3 | 1 | na | PO Box 1379 | | Conroe, TX
77305 | 28-Feb-07 | 0.0499 | na | 0 | | | 75795 | 1009 | 11939-001 | TX0075795 | Northwest Harris Co
MUD #15 | 25 mi northwest of
Houston, 4.5 mi south of
Tomball, 1 mi west of
intersection of Gregson
Rd and SH 249 | Harris | to HCFCDD K-147-07-00,
to Faulkey Gully, to
Cypress Creek | TCEQ, EPA | | apr-oct /
nov-mar | 3.12 | 7/10 | 15 | 2/3 | 1 | na | c/o Schwartz,
Page & Harding
LLP | 1300 Post
Oak Blvd,
Suite 1400 | Houston, TX
77056 | 28-Feb-07 |
0.427 | 0.43 | 0 | | | 76368 | 1004 | 11963-001 | TX0076368 | Montgomery Co
MUD #42 | 3000 ft northwest of
intersection of LaSalle
Ave and SH 105 | Montgomery | to West Fork San Jacinto
River | TCEQ, EPA | | | 0.15 | 10 | 15 | 3 | 1 | na | c/o Coats, Rose,
Yale, Ryman &
Lee PC | 1001 Fannin
Street, Suite
800 | Houston, TX
77002 | 31-Mar-07 | 0.0797 | na | 07/31/06:
minimum of .8 | | | 76481 | 1009 | 11964-001 | TX0076481 | Harris Co WCID
#110 | 1200 ft north of Cypress
Creek, 1400 ft west of IH
45 and US 75 | Harris | to HCFCDD K-123-00-00,
to Cypress Creek | TCEQ, EPA | | | 1 | 7/10 | 15 | 2/3 | 1 | na | 1001 Fannin St.,
Suite 800 | | Houston, TX
77002 | 1-Apr-07 | 0.517 | 0.493 | 0 | | | 76538 | 1008 | 11970-001 | TX0076538 | Montgomery Co.
MUD #19 | on Volunteer Ln, 800 ft
east of Buddle Rd , 1300
ft northwest of
intersection of IH 45 and
Sawdust Rd | Montgomery | to storm sewer system, to
MCDD #6 Channel II-B, to
Spring Creek | TCEQ | | | 0.715 | 10 | 15 | 3 | 1 | na | c/o Smith,
Murdaugh, Little
& Bonham, LLP | 1100
Louisiana
Street, Suite
400 | Houston, TX
77002 | | | | | | | 76791 | 1009 | 11986-001 | TX0076791 | Tower Oak Bend
WSC | 1 mi east of Jones Rd
and 1000 ft north of
Cypress-North Houston
Rd | Harris | to HCFCDD K-161-00-00,
to Cypress Creek | TCEQ | | | 0.05 | 10 | 15 | 3 | 1 | na | PO Box 9879 | | The
Woodlands,
TX 77387 | | | | | | | 76856 | 1009 | 11988-001 | TX0076856 | Harris Co MUD #24 | 450 ft north of
intersection of
Theisswood Rd and
Theiss Gully | Harris | to Theiss Gully, to Spring
Gully, to Cypress Creek | TCEQ, EPA | | apr-oct /
nov-mar | 2 | 7/10 | 15 | 2/3 | 1 | na | 602 Sawyer,
Suite 205 | | Houston, TX
77007 | 31-Dec-06 | 0.612323 | 0.623 | 0 | | | 77241 | 1011 | 11993-001 | TX0077241 | City of Woodbranch
Village | 800 ft east of US 59 and
2.5 mi northeast of
intersection of SH 1485
and US 59 | Montgomery | to Peach Creek | TCEQ, EPA | | | 0.133 | 10 | 15 | 3 | 1 | na | PO Box 804 | | New Caney,
TX 77357 | 28-Feb-07 | 0.059 | na | 0 | | | 77275 | 1008 | 11968-001 | TX0077275 | Tecon Water
Company, LP | 1200 ft west of Dry
Creek, 3000 ft northwest
of intersection of FM
2978 and Hardin Store
Rd in City of Magnolia | Montgomery | to unnamed trib, to Dry
Creek, to Spring Creek | TCEQ | | | 0.052 | 10 | 15 | 3 | 1 | na | 6116 North
Central
Expressway,
Suite 1300 | | Dallas, TX
75206 | | | | | | | 77941 | 1009 | 12025-002 | TX0077941 | Bilma PUD | 8000 ft northeast of intersection of Louetta Rd and Stuebner Airline Rd, 11000 ft southeast of the intersection of Spring Cypress Rd and Stuebner Airline Rd in City of Houston | Harris | to Northwest Gully, to
Spring Creek, to Cypress
Creek | TCEQ, EPA | | | 0.75 | 10 | 15 | 3 | 1 | na | c/o Bacon &
Wallace, LLP | 600 Jefferson,
Suite 780 | Houston, TX
77002 | 31-Dec-06 | 0.294 | na | 0 | | | 78263 | 1008 | 12030-001 | TX0078263 | Rayford Road MUD | 2.1 mi east of
intersection of Rayford
Road and IH 45 | Montgomery | to Montogmery County
Drainage Dtich #6
Channel IIDF, to Spring
Creek | TCEQ | | | 0.0015 | 10 | 15 | 3 | 1 | na | c/o Smith,
Murdaugh, Little
& Bonham, LLP | 1100
Louisiana
Street, Suite
400 | Houston, TX
77002 | | | | | | | 78344 | 1011 | 01386-001 | TX0078344 | Montgomery Co
MUD #16 | south of intersection of
Hickory Ln and Tupelo
Lane, 2 miles north of
New Caney | Montgomery | to unnamed trib, to
unamed trib of Peach
Creek, to Peach Creek | TCEQ, EPA | | | 0.177 | 10 | 15 | 3 | 1 | na | 25522 White
Oak Lane | | Splendora,
TX 77372 | 31-Jan-07 | 0.053 | na | 1 [06/30/03]
with many
overdue
violations | | | NPDES ID | TCEQ
Seg. # | TCEQ
Permit
Number | EPA NPDES
Number | Name | Plant Location | County | Discharge Route | Permit
Information
Source | Status
Notes | Seasonal
Limits | Permitted
flow [MGD] | CBOD
[mg/l] | | NH3N
[mg/l] | Chlorine
Residual
[mg/l] | Fecal
Coliform
[org/100mL] | Address 1 | Address 2 | City/State/
Zip | Flow Date | Flow- effluent gross | Flow- annual | Disinfection
Violations | Other comments | |----------|----------------|--------------------------|---------------------|--------------------------------|---|------------|---|---------------------------------|-----------------|--------------------|-------------------------|----------------|----|----------------|--------------------------------|----------------------------------|---|---|--------------------------------|-----------|----------------------|--------------|--------------------------------|---| | 78433 | 1008 | 12044-001 | TX0078433 | Harris Co MUD #368 | 1 mi east of FM 249 and
1200 ft south of
Boudreaux Rd | Harris | to HCFCDD M-122-00-00,
to Willow Creek, to Spring
Creek | TCEQ, EPA | | | 1.6 | 10 | 15 | 2 | 1 | na | c/o Johnson,
Radcliffe, Pertroy
& Bobbit PLLC | 1001
McKinney
Street, Suite
1000 | Houston, TX
77002 | 30-Apr-07 | 0.461 | na | 0 | | | 78930 | 1009 | 13569-001 | TX0078930 | Samuel Victor Pinter | northwest corner of
Stuebner Airline Rd and
Mittelstead Rd, between
FM 1960 and Cypress
Rd | Harris | to Clow Gully, to Cypress
Creek | TCEQ, EPA | | | 0.0015 | 10 | 15 | 3 | 1 | na | 1413 Avenue J | | Brooklyn,
New York
11230 | 28-Feb-07 | 0.0002 | na | 0 | | | 81264 | 1008 | 12153-001 | TX0081264 | North Harris Co
MUD #19 | 25714 Steeple Canyon,
1.25 mi east of
intersection of Hufsmith
Rd and Kuykendahl Rd | Harris | to HCFCDD M-104-00-00,
to Willow Creek, to Spring
Creek | TCEQ, EPA | | | 0.25 | 10 | 15 | 3 | 1 | na | c/o Young &
Brooks | 1415
Louisiana St,
5th floor | Houston, TX
77002 | 31-Dec-06 | 0.096 | na | 07/31/03-
minimum of
.96 | | | 81272 | 1009 | 14130-001 | TX0081272 | Northwest Harris Co
MUD #10 | 24500 US 290,
southeast of Town of
Cypress | Harris | to Dry Creek, to Cypress
Creek | TCEQ, EPA | | | 0.048 | 10 | 15 | 2 | 1 | na | c/o Smith,
Murdaugh, Little
& Bonham, LLP | 1100
Louisiana
Street, Suite
400 | Houston, TX
77002 | 31-Dec-06 | 0.001 | na | 0 | | | 81337 | 1009 | 13625-001 | TX0081337 | Northwest Harris Co
MUD #20 | 6500 ft north and 8700
feet east of intersection
of FM 1960 and
Stuebner Airline Rd | Harris | to Cypress Creek | TCEQ, EPA | | | 0.4 | 10 | 15 | 3 | 1 | na | c/o Young &
Brooks | 1415
Louisiana St,
5th floor | Houston, TX
77002 | 30-Apr-07 | 0.57 | 0.601 | 0 | | | 82511 | 1011 | 11143-001 | TX0082511 | Splendora ISD | east of SH Spur 512, 0.4
mi northeast of
intersection of SH Spur
512 and FM 2090 | Montgomery | to drainage ditch, to
unnamed trib, to unnamed
pond, to Peach Creek | TCEQ, EPA | | | 0.04 | 10 | 15 | 3 | 1 | na | 26267 FM 2090 | | Splendora,
TX 77372 | 31-Mar-07 | 0.021 | na | 0 | | | 83208 | 1010 | 12205-001 | TX0083208 | Conroe ISD | 2000 ft northwest of
intersection of FM 1314
and Bennette Estates
RD | Montgomery | to Copeland Ditch, to
White Oak, to Caney
Creek | TCEQ, EPA | | | 0.015 | 10 | 15 | 3 | 1 | na | 702 North
Thompson Street | | Conroe, TX
77301 | 30-Apr-07 | 0.0071 | na | 0 | | | 83216 | 1010 | 12204-001 | TX0083216 | Conroe ISD | 1250 ft west of
intersection of SH 105
and Waukegan in tow of
Cut and Shoot | Montgomery | to Caney Creek | TCEQ, EPA | | | 0.02 | 10 | 15 | 3 | 1 | na | 3205 West Davis
Street | | Conroe, TX
77304 | 30-Apr-07 | 0.0185 | na | 0 | | | 83801 | 1009 | 12224-001 | TX0083801 | Klein ISD | 200' East & 2000' North
of the intersection of
Stuebner | Harris | to Cypress Creek | EPA | | | 0.011 | 10 | 15 | 3 | 1 | na | 111000 Brittmore
Park Drive | | Houston, TX
77269 | 31-Mar-07 | 0.005 | na | 0 | | | 83976 | 1008 | 13619-001 | TX0083976 | Aqua Utilities, Inc | 1000 ft southeast of
Kuykendhal Rd Crossing
of Willow Creek, 800 ft
east of Willow Creek | Harris | to unnamed trib, to Willow
Creek, to Spring Creek | TCEQ, EPA | | | 0.04 | 10 | 15 | 3 | 1 | na | 2211 Louetta Rd | | Spring, TX
77388 | 28-Feb-07 | 0.018 | na | 0 | | | 84042 | 1002 | 12242-001 | TX0084042 | Porter MUD | 7200 ft south southeast
of intersection of US 59
an FM 1314, 2100 ft east
southeastof intersection
of Martin Dr and Loop
494 | Montgomery | to unnamed trib, to Ben's
Branch, to Lake Houston | TCEQ, EPA | | | 1.6 | 10 | 15 | 3 | 1 | na | PO Box 1030 | | Porter, TX
77365 | 28-Feb-07 | 0.49 | na | 0 | | | 84085 | 1009 | 12239-001 | TX0084085 | Harris Co MUD #36 | 2.2 miles south and 1.2
miles east of intersection
of FM 1960 and IH 45 | Harris | to HCFCDD K11-07-00 to
Turkey Creek, to Cypress
Creek | TCEQ, EPA | | | 0.99 | 7 | 15 | 2 | 1 | na | c/o Schwartz,
Page & Harding
LLP | 1300 Post
Oak Blvd,
Suite 1400 | Houston, TX
77056 | | | | | no measurements
reported; pipe
active | | 84638 | 1010 | 12274-001 | TX0084638 | New Caney MUD | .4 mile east & 1.6 mile
south of the intersection
of Caney Creek and TX
Hwy 59 | Montgomery | to unnamed tributary to
Caney Creek | TCEQ, EPA | | | 1.06 | 10 | 15 | 3 | 1 | na | PO Box 1799 | | New Caney,
TX 77357 | 31-Jan-07 | 0.7428 | 0.6717 | 0 | | | 84760 | 1009 | 12248-001 | TX0084760 | UA Holdings 1994-5 | 1000' from southeast
intersection SH 249/ | Harris | to unnamed drainage
ditch to Cypress Creek | EPA | | | 0.1 | 10 | 15 | 3 | 1 | na | c/o S C Utilities | PO Box
691034 | Houston, TX
77269 |
28-Feb-07 | 0.029 | na | 0 | | | 85693 | 1008 | 12303-001 | TX0085693 | Aqua Utilities, Inc | 58181 Paloma, 300 ft
west of Goslin Rd, 1500
ft south of Root Rd | Harris | to HCFCDD M101-01-00,
to HCFCDD M101-00-00,
to Willow Creek, to Spring
Creek | TCEQ, EPA | | | 0.015 | 10 | 15 | 3 | 1 | na | 1421 Wells
Branch Parkway,
Suite 105 | | Pflugerville,
TX 78660 | 28-Feb-07 | 0.0065 | na | 0 | | | 85910 | 1009 | 13711-001 | TX0085910 | Spring Cypress WSC | 1442 Spring Cypress Rd,
600 ft northeast of
intersection of IH 45 and
Fm 2920 | Harris | to Wunsche Ditch, to
Lemm Gully, to Cypress
Creek | TCEQ, EPA | | | 0.035 | 10 | 15 | 3 | 1 | na | PO Box 3326
MAC 5004-155 | | Houston, TX
77253 | 31-Aug-06 | 0.023 | na | overdue since
08/31/06 | | | 86011 | 1009 | 12327-001 | TX0086011 | Cypress Hill MUD #1 | 400 ft west of Cypress
Rose Hill Rd and .75 mi
norht of intersection of
Cypress Rose Hill Rd
and US 290 | Harris | to New HCFCDD K145-00
00, to Old HCFCDD K145
00-00, to Cypress Creek | TCEQ, EPA | | | 0.8 | 7 | 15 | 2 | 1 | na | c/o Fullbright and
Jaworski | 1301
McKinney
Street, Suite
5100 | Houston, TX
77010 | 30-Apr-07 | 0.381 | na | 0 | | | NPDES ID | TCEQ
Seg. # | TCEQ
Permit
Number | EPA NPDES
Number | Name | Plant Location | County | Discharge Route | Permit
Information
Source | Status
Notes | Seasonal
Limits | Permitted
flow [MGD] | CBOD
[mg/l] | | NH3N
[mg/l] | Chlorine
Residual
[mg/l] | Fecal
Coliform
[org/100mL] | Address 1 | Address 2 | City/State/
Zip | Flow Date | Flow- effluent gross | Flow- annual | Disinfection
Violations | Other comments | |----------|----------------|--------------------------|---------------------|---|--|------------|--|---------------------------------|-----------------------|--------------------|-------------------------|----------------|--------|----------------|--------------------------------|----------------------------------|---|--------------------------------------|-------------------------------|-----------|------------------------------------|--------------|--|---| | 86053 | 1008 | 12402-001 | TX0086053 | Houston Oaks Golf
Management, LP | 2.5 mi norht of
intersection of Hegar Rd
and FM 2920 | Waller | to unnmaed trib, to Spring
Creek | TCEQ, EPA | | | 0.01 | 10 | 15 | 3 | 1 | na | 22602 Hegar Rd | | Hockley, TX
77447 | 28-Feb-07 | 0.002 | na | 0 | | | 87190 | 1004 | 02475-000 | TX0087190 | Drilling Specialties
Co. LLC | 1 mi south of intersection
of FM 1485 and
Jefferson Chemical Rd,
5 mi east of the City of
Conroe | Montgomery | to drainage ditch, to West
Fork Crystal Creek, to
Crystal Creek, to West
Fork San Jacinto River | TCEQ, EPA | | | 0.016 | 40 | 40 | 5 | na | na | PO Box 2567 | | Conroe, TX
77305 | 28-Feb-07 | 0.0049 | na | 0 | | | 87424 | 1009 | 13963-001 | TX0087424 | Luther's Bar-B-Q,
Inc. | 703 FM 1960 West,
south of intersection of
FM 1960 and Hafer Rd,
0.6 mi west of IH 45 | Harris | to storm sewer, to
Cypress Creek | TCEQ, EPA | | | 0.005 | 10 | 15 | 3 | 1 | na | 2611 FM 1960
West, suite B101 | | | 31-Jan-07 | | | overdue since
06/30/05 | pipe has active
status | | 87475 | 1008 | 12382-001 | TX0087475 | C&P Utilities, Inc/
J&S Water
Company, LLC ⁵ | 3300 ft west of
intersection of Rothwood
Rd crosses Spring Creek | Harris | to Willow Creek to Spring
Creek | TCEQ, EPA | | | 0.12 | 10 | 15 | 3 | 1 | na | PO Box 9449 | | The
Woodlands,
TX 77380 | 28-Feb-07 | 0.068 | na | 0 | | | 87793 | 1004 | 02502-000 | TX0087793 | Hanson Aggregates
Central, Inc. | 12541 Sleepy Hollow
Rd, 3.5 mi east of IH 45,
7 mi south of City of
Conroe | Montgomery | to unnamed trib, to West
Fork San Jacinto River | TCEQ, EPA | | | 0.35 | na | report | na | na | na | 8505 Freeport
Parkway, Suite
135 | | Irving, TX
75063 | 31-Jan-07 | no discharge | na | not reported | | | 87831 | 1010 | 11020-002 | TX0087831 | City of New Waverly | | Walker | | | No info.
Available | | unk | | | | | | | | | | | | | | | 88501 | 1004 | 10495-142 | TX0088501 | City of Houston | | Montgomery | | | No info.
Available | | unk | | | | | | | | | | | | | | | 89184 | 1009 | 12470-001 | TX0089184 | Harris Co MUD #221 | 3000 ft northeast of
intersection of Richey Rd
and Imperial Valley Dr
and 3000 ft northwest of
intersection of Richey Rd
and Hardy Rd | Harris | to Turkey Creek, to
Cypress Creek | TCEQ, EPA | , wantasio | | 1.8 | 7 | 15 | 2 | 1 | report | c/o Vinson and
Elkins | 1001 Fannin
Street, Suite
2300 | Houston, TX
77002 | 30-Apr-07 | 0.709 | 0.688 | Has both
chlorine and
fecal
measurements | see: separate
worksheet for
additional data | | 89672 | 1004 | 13760-001 | TX0089672 | Montgomery Co
MUD #56 | northwest of intersection
of US 59 and FM 1314 | Montgomery | to San Jacinto Heights
Channel 1A, to West Fork
San Jacinto River | TCEQ, EPA | | | 0.1 | 10 | 15 | 3 | 1 | na | c/o Young &
Brooks | 1415
Louisiana St,
5th floor | Houston, TX
77002 | 31-Mar-07 | 0.0559 | na | 0 | | | 89915 | 1008 | 12519-001 | TX0089915 | Aquasource Utility,
Inc | 3/8 mi east of
Kuykendahl Rd, 1 mi
norht of intersection of
Hufsmith Rd and
Kuykendahl Rd | Harris | to Metzler Creek, to
Cannon Gully, to Willow
Creek, to Spring Creek | TCEQ, EPA | | | 0.1 | 10 | 15 | 3 | 1 | na | 11100 Bittmore
Park Dr. | | Houston, TX
77041 | 28-Feb-07 | 0.061-
most data
around .025 | na | 0 | | | 90000 | 1008 | 13697-001 | TX0090000 | Cedarstone One
Investors, Inc | .1 mi from intersection
of Sawdust Rd and
Sawmill Rd | Montgomery | to storm water ditch, to
unnamed trib, to Panther
Branch, to Spring Creek | TCEQ, EPA | | | 0.003 | 10 | 15 | 3 | 1 | na | 1110 North Post
Oak Rd, Suite
170 | | Houston, TX
77055 | 28-Feb-07 | 0.0004 | na | 0 | | | 90123 | 1004 | 13700-001 | TX0090123 | Chateau Woods
MUD | 600 ft north of intersection of Longleaf Dr and Beech St | Montgomery | to White Oak Creek, to
West Fork San Jacinto
River | TCEQ, EPA | | | 0.2 | 10 | 15 | 3 | 1 | na | 10224 Fairview
Rd | | Conroe, TX
77385 | 28-Feb-07 | 0.0875 | na | Three
Violations
11/30/069
08/30/069
09/30/047 | | | 90182 | 1009 | 12541-001 | TX0090182 | Chasewood Utilities,
Inc | 20131 SH 249,
northwest of intersectoin
of SH 249 and Cypress
Creek | Harris | to Cypress Creek | TCEQ, EPA | | | 0.1 | 10 | 15 | 3 | 1 | na | 8500
Cypresswood Dr,
Suite 201 | | Spring, TX
77379 | 31-Mar-07 | 0.018 | na | 0 | | | 90344 | 1009 | 12730-001 | TX0090344 | Champ's Water
Company | 10717 County Meadow
Ln, 150 west of
intersection of County
Meadow Ln and
Huffsmith-Kohrville, 2.3
mi south of city of
Tomball | Harris | to unnamed roadside
ditch, to HCFCDD K-140-
00-00, to Cypress Creek | TCEQ, EPA | | | 0.0154 | 10 | 15 | 3 | 1 | na | 13217-A
Chrisman Rd | | Houston, TX
77039 | 31-Jan-07 | 0.002617 | na | 0 | | | 90824 | 1009 | 12579-001 | TX0090824 | Spring West MUD | 1000 ft east of
intersection of FM 2920
and Foster Rd | Harris | to Senger Gully, to
Cypress Creek | TCEQ, EPA | | | 0.762 | 7 | 15 | 2 | 1 | na | c/o Schwartz,
Page & Harding
LLP | 1300 Post
Oak Blvd,
Suite 1400 | Houston, TX | 31-Mar-07 | 0.101 | na | 12/31/04:
reported min of
.58 | | | 90841 | 1009 | 13472-001 | TX0090841 | Hockley Rail Car, Inc | 17000 Premium Drive,
west of the City of
Hockley | Harris | to pipeline, to county
ditch, to unnamed trib, to
Little Cypress Creek, to
Cypress Creek | TCEQ, EPA | | | 0.006 | 10 | 15 | 3 | 1 | na | 17000 Premium
Drive | | Hockley, TX
77447 | 28-Feb-07 | 0.00035 | na | 0 | | | 90905 | 1008 | 12587-001 | TX0090905 | Tecon Water
Company, LP | 1.3 mi west of
intersection of Huffsmith-
Dobbin Rd and Hardin-
Store Rd | Montgomery | to unnamed trib, to Mill
Creek, to Neidigk Lake, to
Mill Creek, to Spring
Creek | TCEQ | | | 0.46 | 10 | 15 | 3 | 1 | na | 4144 North
Central
Expressway,
Suite 900 | | Dallas, TX
75204 | | | | | | | 91171 | 1009 | 12600-001 | TX0091171 | Elite Computer
Consultants, LP | 14110 Grant Rd, 00 ft
west of Shaw Rd and
800 ft northeast of Grant
Rd | Harris | to Faulkey Gully to
Cypress Creek | TCEQ, EPA | | | 0.008 | 10 | 15 | 3 | 1 | na | 10333 Northwest
Freeway, Suite
414 | | Houston, TX
77092 | 28-Feb-07 | 0.0011 | na | 0 | | | NPDES ID | TCEQ
Seg. # | TCEQ
Permit
Number | EPA NPDES
Number | Name | Plant Location | County | Discharge Route | Permit
Information
Source | Status
Notes | Seasonal
Limits | Permitted flow [MGD] | CBOD
[mg/l] | | NH3N
[mg/l] | Chlorine
Residual
[mg/l] | Fecal
Coliform
[org/100mL] | Address 1 | Address 2 | City/State/
Zip | Flow Date | Flow- effluent gross | Flow- annual | Disinfection
Violations | Other comments | |----------|----------------|--------------------------|---------------------|---|---|------------|--
---------------------------------|-----------------|--------------------|----------------------|----------------|-----|----------------|--------------------------------|----------------------------------|---|---|-------------------------------|-----------|---|--------------|--|---| | 91481 | 1009 | 12614-001 | TX0091481 | Harris Co MUD #16 | 2000 ft west of Hardy Rd
and 1 mi north of
intersection of Hardy Rd
and Farrell Rd | Harris | to lateral H ofTurkey
Creek, to Turkey Creek,
to Cypress Creek | TCEQ, EPA | | | 0.5 | 10 | 15 | 3 | 1 | na | c/o Schwartz,
Page & Harding
LLP | 1300 Post
Oak Blvd,
Suite 1400 | Houston, TX
77056 | 30-Apr-07 | 0.147 | na | 0 | | | 91677 | 1010 | 12621-001 | TX0091677 | Martin Realty &
Land, Inc | 2 mi southeast of
intersection of FM 1485
and FM 2090 | Montgomery | to unnamed drainage
dtich, to unnamed trib, to
Caney Creek | TCEQ, EPA | | | 0.15 | 10 | 15 | 3 | 1 | na | PO Box 603 | | Porter, TX
77365 | 30-Apr-07 | no charge;
charge of .099
on 01/31/07 | na | 0 | | | 91715 | 1008 | 12597-001 | TX0091715 | San Jacinto River
Authority | 2000 ft northwest of
confluence of Bear
Branch and Panther
Branch, 3.5 miles south
of intersection of FM
1488 and IH 45 | Montgomery | to Panther Branch, to
Lake Woodlands, to
Panther Branch, to Spring
Creek | TCEQ, EPA | | | 7.8 | 10 | 15 | 2 | na | 200 | 2436 Sawdust
Rd | | The
Woodlands,
TX 77380 | 30-Nov-06 | 3.344 | 3.275 | fecal coliform
measurements | see: separate
worksheet for
additional data | | 91731 | | 10008-001 | TX0091731 | City of Conroe | | Montgomery | | EPA | Inactive | | unk | | | | | | 900 Holly Drive | | Conroe, TX
77301 | | | | | | | 91791 | 1008 | 12637-001 | TX0091791 | Spring Center, Inc | 1.5 mi north of City of
Spring at 22820 IH 45
North | Harris | to drainage ditch, to
underground storm sewer,
to Spring Creek | TCEQ, EPA | | | 0.006 | 10 | 15 | 3 | 1 | na | 6671 Southwest
Freeway, Suite
750 | | Houston, TX
77074 | 31-Dec-06 | 0.00385 | na | 14 Total
2006: Four
2005: Five
2004: Five
many overdue
violations | | | 91987 | 1008 | 12643-001 | TX0091987 | Pinewood
Community LP | 9601 Dowdell Road,
quarter mile northeast
INTX | Harris | to Spring Creek | EPA | | | 0.1 | 10 | 15 | 3 | 1 | na | 12115 Wessex
Dr. | Lot #1 | Houston, TX
77089 | 30-Nov-06 | 0.062 | na | 0 | | | 92088 | 1008 | 12650-001 | TX0092088 | Spring Oaks Mobile
Home Park, Inc. | 4200 Spring-Steubner
Road, 2.5 miles | Harris | to HCFCD to Spring
Creek | EPA | | | 0.025 | 10 | 15 | 3 | 1 | na | 4320 Spring
Stuebner Road | | Spring, TX
77389 | 28-Feb-07 | 0.0069 | na | 0 | | | 92258 | 1009 | 02608-000 | TX0092258 | Center Point Energy
Houston Electric LLC | 1808 Huffmeister Rd,
northwest of the
intersection of
Huffmeister Rd and
Cypress-Rosehill Rd and
25 mi northwest of the
City of Houston | Harris | to storm sewer drain, to
HCFCDD K145-05-00, to
HCFCDD K145-00-00, to
Dry Creek, to Cypress
Creek | TCEQ, EPA | | | 0.02 | 1.7 | 2.5 | 0.5 | na | na | PO Box 1700 | | Houston, TX
77251 | 30-Apr-07 | 0.0016 | na | 0 | | | 92517 | 1010 | 12670-001 | TX0092517 | Mountain Man, Inc./
Ranch Utilities, LP ² | 2100 ft north of FM 1097
and 1.9 mi east
northeast of City of Willis | Montgomery | to unnamed gully, to
unnamed trib, to Camp
Creek, to Caney Creek | TCEQ, EPA | | | 0.175 | 10 | 15 | 3 | 1 | na | 13721 Running
Bear Drive | | Willis, TX
77378 | 31-Jan-07 | 0.052 | na | 0 | | | 92843 | 1008 | 12703-001 | TX0092843 | Magnolia ISD | 1.1 mi south of intersection of FM 1488 and 2878 | Montgomery | to Bear Branch, to Bear
Branch Reservioir, to
Bear Branch, to Panther
Branch, to Lake
Woodlands, to Panther
Branch, to Spring Creek | TCEQ, EPA | | | 0.048 | 10 | 15 | з | 1 | na | PO Box 791 | | Montgomery,
TX 77353 | 28-Feb-07 | 0.014 | na | 0 | | | 92894 | 1009 | 14044-001 | TX0092894 | 149 Enterprises, Inc | 1300 ft east of FM 149
and 3500 ft north of
intresection of FM 149
and Spring Cypress Rd | Harris | to Pilot Gully to Cypress
Creek | TCEQ | | | 0.01 | 10 | 15 | 3 | 1 | na | 1300 South
Frazier Street,
Suite 406 | | Conroe, TX
77301 | | | | | | | 92967 | 1009 | 12378-002 | TX0092967 | Richey Rd MUD | 3300 ft northeast of
intersection of Hardy Toll
Rd and WW Thome Dr,
3 mi south southwest of
the City of Westfield | Harris | to Turkey Creek, to
Cypress Creek | TCEQ, EPA | | | 0.45 | 10 | 15 | 3 | 1 | na | c/o Johnson,
Radcliffe, Pertroy
& Bobbit PLLC | 1001
McKinney
Street, Suite
1000 | Houston, TX
77002 | 28-Feb-07 | 0.319357 | na | 0 | | | 93220 | 1011 | 13638-001 | TX0093220 | Roman Forest
Consolidated MUD | 1.7 mi east of US 59 and
1.2 mi north of
intersection of US 59
and FM 1458 at 1602
Athens St | Montgomery | to Peach Creek | TCEQ, EPA | | | 0.322 | 10 | 15 | 3 | 1 | na | PO Box 899 | | New Caney,
TX 77357 | 28-Feb-07 | 0.1707 | na | 0 | | | 93483 | 1002 | 02642-000 | TX0093483 | PWT Enterprises,
Inc. | 1956 North Park Dr, 1.5
mi east of US 59 | Montgomery | to drainage ditch, to
HCFDD, to Lake Houston | TCEQ, EPA | | | 0.003 | na | 0.4 | na | na | na | 6128 Jadecrest | | Spring, TX
77389 | 28-Feb-07 | 0.000712 | na | chlorine not
measured | | | 93505 | 1004 | 12761-001 | TX0093505 | Malek Vashmeh | 0.25 mi southeast of
intersection of SH 105
and Old SH 105, 0.25 mi
west of intersection of
SH 105 and East Beach
Rd | Montgomery | to Base Creek, to West
Fork San Jacinto River | TCEQ, EPA | | | 0.05 | 10 | 15 | 3 | 1 | na | c/o L.R. Karbalai | PO Box 55528 | Houston, TX
77255 | 31-Jan-07 | 0.017 | na | 0 | | | 93564 | 1004 | 12212-002 | TX0093564 | City of Shenandoah | 800 ft east of IH 45 and
4000 ft north of Tamina
Road | Montgomery | to pipeline, to Carters
Slough, to West Fork San
Jacinto River | TCEQ, EPA | | | 3 | 10 | 15 | 2 | 1 | na | 29811 IH 45
North | | Shenandoah,
TX 77391 | 28-Feb-07 | 0.416 | 0.449 | 0 | | | NPDES ID | TCEQ
Seg. # | TCEQ
Permit
Number | EPA NPDES
Number | Name | Plant Location | County | Discharge Route | Permit
Information
Source | Status
Notes | Seasonal
Limits | Permitted
flow [MGD] | CBOD
[mg/l] | TSS
[mg/l] | NH3N
[mg/l] | Chlorine
Residual
[mg/l] | Fecal
Coliform
[org/100mL] | Address 1 | Address 2 | City/State/
Zip | Flow Date | Flow- effluent gross | Flow- annual | Disinfection
Violations | Other comments | |----------|----------------|--------------------------|---------------------|--|---|------------|---|---------------------------------|-----------------|----------------------|-------------------------|----------------|---------------|----------------|--------------------------------|----------------------------------|--|--------------------------------------|-------------------------|-----------|--|--------------|----------------------------|--| | 93939 | 1009 | 12812-001 | TX0093939 | Regency 1-45/
Spring Cypress
Retal, L.P. | 1518 Spring Cypress
Road | Harris | Wunsche Ditch to Lemm
Gully to Cypress Creek | EPA | | | 0.06 | 10 | 15 | 3 | 1 | na | 3700 Buffalo
Speedway, Suite
840 | | Houston, TX
77098 | 28-Feb-07 | 0.0023 | na | 0 | | | 94315 | 1008 | 14266-001 | TX0094315 | HMV Special Utility
District | 1.5m southwest of FM
Road 149 & FM Road
2978 | Montgomery | to unnamed tributary of
Spring Creek | EPA | | | 0.025 | 10 | 15 | 3 | 1 | na | 26718 Decker
Praire-Rosehill | | Pinehurst, TX
77362 | 31-Jan-07 | 0.031 | na | 0 | | | 94552 | 1008 | 12851-001 | TX0094552 | Richard Clark
Enterprises, LLC | 600 ft west of Drecker
Branch crossing of SH
249, 2.3 mi southeast of
intersection of SH 249
and FM 1774 | Montgomery | to Drecker Branch, to
Neidigk Lake, to Mill
Creek, to Spring Creek | TCEQ, EPA | | | 0.06 | 10 | 15 | 3 | 1 | na | 32927 SH 249 | | Pinehurst, TX
77362 | 31-Jan-07 | | | Overdue since
08/30/05 | | | 94706 | 1009 | 12877-001 | TX0094706 | Harris Co MUD #230 | 3000 ft west of FM 149
and 4000 ft south of
Cypress Creek | Harris | to HCFCDD K-139-00-00,
to Cypress Creek | TCEQ, EPA | | | 0.76 | 7 | 15 | 2 | 1 | na | c/o Vinson and
Elkins | 1001 Fannin
Street | Houston, TX
77002 | 31-Mar-07 | 0.204 | na | 0 | | | 95125 | 1008 | 12898-001 | TX0095125 | Aqua Utilities, Inc | 2300 feet north of Spring
Creek, 5500 ft east of | Montgomery | unnamed trib to Spring
Creek | EPA | | | 0.075 | 10 | 15 | 3 | 1 | na | 11100 Brittmore
Park Dr. | | Houston, TX
77041 | 04/31/07 | 0.027 | na | 0 | | | 95621 | 1008 | 12788-001 | TX0095621 | Eastwood Mobile
Home Park LP | Eastwood Hills
Subdivision, east of Mo
Pac Railroad, 2500 ft
south of Robinson Rd | Montgomery | to Montgomery County
Drainage Ditch, to
Montgomery County
Drainage Ditch No. 6,
Channel II DF, to Spring
Creek | TCEQ, EPA | | | 0.05 | 10 | 15 | 3 | 1 | na | Eastwood Hills
Subdivision | 3000 Town
Center, Suite
450 | Southfield, MI
48075 | 28-Feb-07 | 0.0065 | na | 0 | no chlorine
minimum | | 96865 | 1009 | 13027-001
| TX0096865 | Harris County | 25011 West Hardy Rd | Harris | to Lemm Gully, to
Cypress Creek | TCEQ, EPA | | | 0.01 | 10 | 15 | 3 | 1 | na | 1001 Preston
Ave, 7th Floor | | Houston, TX
77002 | 31-Jan-07 | No charge;
charge of .0007
on 07/31/06 | na | 0 | | | 96920 | 1009 | 13020-001 | TX0096920 | Harris Co MUD #286 | 4500 ft west of crossing
of FM 249 over Cypress
Creek | Harris | to Cypress Creek | TCEQ, EPA | | | 0.6 | 10 | 15 | 3 | 1 | na | c/o Schwartz,
Page & Harding
LLP | 1300 Post
Oak Blvd,
Suite 1400 | Houston, TX
77056 | 31-Mar-07 | 0.207 | na | 06/30/03-
minimum of .5 | | | 97209 | 1009 | 13054-001 | TX0097209 | CW-MHP Ltd | 20810 Cypress Wood
Drive | Harris | to drainage ditch, to
Cypress Creek | TCEQ, EPA | | | 0.01 | 10 | 15 | 3 | 1 | na | PO Box 130379 | | Houston, TX
77219 | 28-Feb-07 | 0.002 | na | 0 | | | 97969 | 1008 | 13115-001 | TX0097969 | Clovercreek MUD | 2 miles south of
Magnolia, TX on Nichols-
SA | Montgomery | to Spring Creek | EPA | | | 0.12 | 10 | 15 | 3 | 1 | na | 11100 Brittmore
Park Dr. | | Houston, TX
77041 | 31-Mar-07 | 0.0326 | na | 0 | | | 98434 | 1009 | 13059-001 | TX0098434 | Kwik-Kopy Corp | 12715 Telge Rd, 1.25 mi
north of intersection of
Telg rd and SH 6 and US
290 | Harris | to Cypress Creek | TCEQ, EPA | | | 0.015 | 10 | 15 | 3 | 1 | na | One Kwik Kopy
Lane | | Cypress, TX
77429 | 28-Feb-07 | 0.008 | na | 0 | | | 98647 | 1009 | 13152-001 | TX0098647 | Northwest Harris Co
MUD #32 | 4500 ft south of
intersection of FM 2920
and Kuykendahl Rd,
9500 northeast of the
intersection of Stuebner
Airline Rd and Spring
Cypress Rd | Harris | to HCFCDD K-131-04-00,
to Spring Gully, to
Cypress Creek | TCEQ, EPA | | | 0.65 | 10 | 15 | з | 1 | na | c/o Schwartz,
Page & Harding
LLP | 1300 Post
Oak Blvd,
Suite 1400 | Houston, TX
77056 | 30-Apr-07 | 0.356 | na | 0 | | | 99180 | 1004 | 14248-001 | TX0099180 | Vanceco, Inc | 3200 ft west of
intersection of SH 105
and San Jacinto River | Montgomery | to Base Creek, to West
Fork San Jacinto River | TCEQ, EPA | | | 0.02 | 10 | 15 | 3 | 1 | na | 149 April Wind
Drive East | | Montgomery,
TX 77356 | 31-Jan-07 | 0.001678 | na | 0 | | | 102121 | 1003 | 02919-000 | TX0102121 | Gardner Glass
Products, Inc | east side of SH 75,
south of Goree State
Prison Farm, 4 mi
southeast of City of
Huntsville | Walker | to drainage ditch, to
unnamed trib, to Mays
Creek, to Winters Bayou,
to East Fork San Jacinto
River | TCEQ | | | 0.102 | 17 | 17 | na | na | na | 7553 Highway 75
South | | Huntsville, TX
77340 | | | | | | | 102512 | 1011 | 13389-001 | TX0102512 | City of Splendora | 1800 ft northeast of
intersection of FM 2090
and Cox Street in
Splendora | Montgomery | to roadside channel, to
unnamed trib, to Peach
Creek | TCEQ, EPA | | | 0.3 | 10 | 15 | 3 | 1 | na | PO Box 1087 | | Splendora,
TX 77372 | 28-Feb-07 | 0.098 | na | 06/30/04
minimum of .7 | | | 102962 | 1004 | 14709-001 | TX0102962 | Stone Hedge Utility
Co, Inc | 6100 ft northeast of
intersection of SH 105
and Sh 336 | Montgomery | to unnamed trib, to East
Fork Crystal Creek, to
Crystal Creek, to West
Fork San Jacinto River | TCEQ, EPA | | | 0.015 | 10 | 15 | 3 | 1 | na | PO Box 426 | | Spring, TX
77383 | | | | | No
measurements
reported; pipe
active | | 105376 | 1009 | 13296-002 | TX0105376 | Harris Co MUD #358 | 1500 ft north of US 290
and 2700 ft west of
Mueschke Rd | Harris | to HSFCDD K-159-00-00,
to Cypress Creek | TCEQ, EPA | | mar-oct /
nov-feb | 2 | 7/10 | 15 | 2/3 | 1 | na | c/o Vinson and
Elkins | 1001 Fannin
Street | Houston, TX
77002 | 30-Apr-07 | 0.756 | 0.785 | 0 | | | 105996 | 1002 | 13526-001 | TX0105996 | Kings Manor MUD | 0.6 mi northeast of
intersection of SH Loop
494 and Kingwood Dr | Harris | to HCFCDD G-103-38-01,
to Bear Branch Diversion
Channel G103-38, to
Lake Houston | TCEQ, EPA | | | 0.4 | 10 | 15 | 3 | 1 | na | c/o Paul A.
Philbin &
Associates, PC | 6363
Woodway Dr,
Suite 725 | Houston, TX
77057 | 31-Mar-07 | 0.2154 | na | 0 | flow violation
12/31/05 | | 108120 | 1009 | 13573-001 | TX0108120 | Northwest Harris
County MUD #36 | 1200 feet west of IH 45
& Holzwarth Rd. | Harris | Seals Gully to Cypress
Creek | EPA | | | 0.2 | 5 | 10 | 3 | 1 | | c/o Bacon &
Wallace, LLP | PO Box 11750 | Spring, TX
77391 | 04/31/07 | 0.113 | na | 0 | | | NPDES ID | TCEQ
Seg. # | TCEQ
Permit
Number | EPA NPDES
Number | Name | Plant Location | County | Discharge Route | Permit
Information
Source | Status
Notes | Seasonal
Limits | Permitted
flow [MGD] | CBOD
[mg/l] | TSS
[mg/l] | NH3N
[mg/l] | Chlorine
Residual
[mg/l] | Fecal
Coliform
[org/100mL] | Address 1 | Address 2 | City/State/
Zip | Flow Date | Flow- effluent gross | Flow- annual | Disinfection
Violations | Other comments | |----------|----------------|--------------------------|---------------------|------------------------------------|--|------------|--|---------------------------------|-----------------|--------------------|-------------------------|----------------|---------------|----------------|--------------------------------|----------------------------------|--|---|-----------------------|-----------|----------------------|--------------|---|---| | 108553 | 1008 | 13614-001 | TX0108553 | Richfield Investment
Corp | 1 mi northeast of SH
249, 7000 ft northwest of
Chicagor Rock Island
and Pacific and Mo Pac
Railroad crossing, 4.5 mi
northwest of Tomball | Montgomery | to unnamed trib, to Cow
Branch, to Decker
Branch, to Neidigk Lake,
to Mill Crekk, to Spring
Creek | TCEQ | | | 0.61 | 5 | 12 | 2 | 1 | na | 10001
Westheimer Rd,
Suite 2888 | | Houston, TX
77042 | | | | | | | 109622 | 1008 | 13636-001 | TX0109622 | Richfield Investment
Corp | 4500 ft southeast of the intersection of Wright Rd and SH 249 | Montgomery | to unnamed trib, to
Decker branch, to Neidigk
Lake, to Mill Creek, to
Spring Creek | TCEQ | | | 0.405 | 7 | 15 | 2 | 1 | na | 10001
Westheimer Rd,
Suite 2888 | | Houston, TX
77042 | | | | | | | 110663 | 1008 | 13653-001 | TX0110663 | Magnolia ISD | 4.73 mi south of city of
Magnolia | Montgomery | to pipe, to drainage ditch,
to unnamed trib, to
Walnut Creek, to Spring
Creek | TCEQ, EPA | | | 0.015 | 10 | 15 | 3 | 1 | na | PO Box 791 | | Magnolia, TX
77353 | 28-Feb-07 | 0.004 | na | 0 | | | 111473 | 1010 | 13690-001 | TX0111473 | Conroe ISD | 2000 ft south of FM 2090
and 600 ft west of FM
1485 and 10 mi
southeast of City of
Conroe | Montgomery | to Caney Creek | TCEQ, EPA | | | 0.1 | 10 | 15 | 3 | 1 | na | 3205 West Davis
Street | | Conroe, TX
77304 | 30-Apr-07 | 0.086 | na | 0 | | | 113107 | 1009 | 13753-001 | TX0113107 | Harris Co MUD #360 | 3500 ft north of
intersection of Kluge Rd
and Huffmeister Rd,
1100 ft northwest of
Kluge Rd, 4 mi north of
intersection of US 290
and Huffermeister Rd | Harris | to Little Cypress Creek, to
Cypress Creek | TCEQ, EPA | | | 0.8 | 7 | 15 | 2 | 1 | na | c/o Schwartz,
Page & Harding
LLP | 1300 Post
Oak Blvd,
Suite 1400 | Houston, TX
77056 | 31-Mar-07 | 0.253 | na | 0 | | | 113115 | 1009 | 11988-003 | TX0113115 | Harris Co MUD #24 | 7500 Ft north of Louetta
Rd in Spring | Harris | to storm sewer, to
HCFCDD K-131-02-00, to
Spring Gully, to Cypress
Creek | TCEQ, EPA | | | 0.06 | na | 25 | na | na | na | c/o Strawn &
Richardson, PC | 602 Sawyer
Street, Suite
205 | Houston, TX
77007 | 31-Dec-06 | 0.062 | na | 0 | (drinking water treatment plant) | | 113123 | 1009 | 11988-002 | TX0113123 | Harris Co MUD #24 | 4000 Ft north of Louetta
Rd, 200 ft east of
Steubner Airline Rd | Harris | to storm water system, to
Theiss Gully, to Spring
Gully, to Cypress Creek | TCEQ, EPA | | | 0.06 | na | 25 | na | na | na | c/o Strawn &
Richardson, PC | 602 Sawyer
Street, Suite
205 | Houston, TX
77007 | 31-Dec-06 | 0.031 | na | 0 | (drinking water treatment plant) | | 113930 | 1009 | 13819-001 | TX0113930 | Arthur Edward Bayer | 1400 ft south of Spring
Cypress Rd | Harris | to pipe, to Lemm Gully, to
Cypress Creek | TCEQ, EPA | Inactive | | 0.06 | 10 | 15 | 3 | 1 | na | PO Box 127 | | Spring, TX
77383 | | | | | | | 113948 | 1009 | 04313-000 | TX0113948 | Northwest Airport
Management LP | south of intersection of
FM 2920 and Stubner-
Airline Rd, 3.75 mi
southeast of the City of
Tomball | Harris | via pipe to taxiway ditch,
to Hooks Airport
stormwater detention
pond, to HCFCD K131-02
04, to Theiss Gully, to
Spring Gully, to Cypress
Creek | TCEQ, EPA | | | variable | na | na | na | na | na | 20803 Stuebner
Airline Road, #0 | | Spring, TX
77379 | 31-May-07 | 0 | na | 0 | | | 115827 | 1008 | 13863-001 | TX0115827 | H.H.J., Inc | 0.8 mi north of intersection of SH 249 and Stagecoach Rd, 2.7 mi southeast of intersection of FM 149 and 1774, 4.0 mi northwest of City of Tomball | Montgomery | to Decker Branch, to
Neidigk Lake, to Mill
Creek, to Spring Creek | TCEQ, EPA | | | 0.8 | 10 | 15 | 2 | 1 | na | 617 West Main
Street | | Tomball, TX
77375 | 31-Jul-06 | 0.0736 | na | overdue since
07/31/06 | | | 115924 | 1002 | 10495-149 | TX0115924 | City of
Houston | 1100 ft north of Hamblen
Road, 2750 ft. east | Harris | 18 inch pipe to unnamed
ditch to HCFCD to Lake
Houston | EPA | | | 0.95 | 10 | 15 | 3 | na | 200 | Dept of Public
Works &
Engineering | PO Box
262549 | Houston, TX
77207 | 31-Mar-07 | 0.392 | na | fecal coliform
measurements
One viol:
10/31/05 | see: separate
worksheet for
additional data | | 115983 | 1009 | 13875-002 | TX0115983 | Harris Co MUD #383 | 2.3 mi northeast of the
intersection of SH 249
and Spring Cypress Rd,
1.8 mi west of
intersection of Stuebner-
Airline Rd, and Spring
Cypress Rd | Harris | to HCFCDD K-133-00-00,
to Dry Gully, to Cypress
Creek | TCEQ, EPA | | | 1.5 | 7 | 15 | 2 | 1 | na | c/o Allen Boone
Humphries
Robinson LLP | 3200
Southwest
Freeway,
Suite 2600 | Houston, TX
77027 | 31-Mar-07 | 0.548 | na | 0 | | | 116009 | 1009 | 13881-001 | TX0116009 | Harris Co MUD #365 | 250 ft north of Jarvis Rd,
3150 ft east of Skinner
Rd | Harris | to Dry Creek, to Cypress
Creek | TCEQ, EPA | | | 1.2 | 7 | 15 | 2 | 1 | na | c/o Vinson and
Elkins | 1001 Fannin
Street, Suite
2300 | Houston, TX
77002 | 31-Mar-07 | 0.528 | na | 0 | | | NPDES ID | TCEQ
Seg. # | TCEQ
Permit
Number | EPA NPDES
Number | Name | Plant Location | County | Discharge Route | Permit
Information
Source | Status
Notes | Seasonal
Limits | Permitted
flow [MGD] | CBOD
[mg/l] | TSS [mg/l] | NH3N
[mg/l] | Chlorine
Residual
[mg/l] | Fecal
Coliform
[org/100mL] | Address 1 | Address 2 | City/State/
Zip | Flow Date | Flow- effluent
gross | Flow- annual | Disinfection
Violations | Other comments | |----------|----------------|--------------------------|---------------------|--|---|------------|---|---------------------------------|-----------------|--------------------|-------------------------|----------------|------------|----------------|--------------------------------|----------------------------------|---|---|------------------------|-----------|--|--------------|---|--| | 116068 | 1009 | 13765-001 | TX0116068 | Harris Co MUD #249 | 1500 ft south southwest
of confluence of
Wunsche Gully and
Lemm gully, 3000 ft east
of IH 45 and 3800 ft west
of Hardy Tool Road | Harris | to Wunsche Ditch, to
Lemm Gully, to Cypress
Creek | TCEQ, EPA | | | 0.8 | 7 | 15 | 2 | 1 | na | c/o Schwartz,
Page & Harding
LLP | 1300 Post
Oak Blvd,
Suite 1400 | Houston, TX
77056 | 31-Mar-07 | 0.2099 | na | 0 | | | 117129 | 1009 | 14028-001 | TX0117129 | Harris Co MUD 371 | House Hahl Rd, 5000 ft
south of intersection of
House Hahl Rd and US
290 | Harris | to pipe, to Cypress Creek | TCEQ, EPA | | | 0.25 | 10 | 15 | 3 | 1 | na | c/o Vinson and
Elkins | 1001 Fannin,
Suite 2300 | Houston, TX
77002 | 30-Apr-07 | 0.104 | na | 0 | | | 117145 | 1010 | 14029-001 | TX0117145 | LGI Housing, LLC/
Quadvest, LP ⁶ | 2600 ft north of SH 242,
2.2 mi east of
intersection of SH 242
and FM 1214 | Montgomery | to unnamed drainage
ditch, to Dry Creek, to
Caney Creek | TCEQ, EPA | | | 0.6 | 10 | 15 | 3 | 1 | na | 19221 IH 45
South, Suite 230 | | Conroe, TX
77385 | 28-Feb-07 | 0.121 | na | 0 | | | 117463 | 1011 | 11143-002 | TX0117463 | Splendora ISD | 23411 FM 2090, 3 miles
northwest of the
intersection of IH | Montgomery | to Peach Creek | EPA | | | 0.04 | 10 | 15 | 3 | 1 | na | 26267 FM 2090
East | | Splendora,
TX 77372 | 30-Apr-07 | 0.009 | na | 0 | | | 117595 | 1008 | 10616-002 | TX0117595 | City of Tomball | south of Holderrieth Rd,
2100 ft north of Willow
Creek, 4300 ft east of
intersection of SH 249
and Holderrieth Rd | | to HCFCDD M121-00-00,
to Willow Creek, to Spring
Creek | TCEQ, EPA | | | 1.5 | 10 | 15 | 3 | 1 | na | 401 Market St,
Suite C | | Tomball, TX
77375 | 31-Jan-07 | 1.108 | 0.9 | 0 | | | 117633 | 1008 | 13942-001 | TX0117633 | Inline Utilities, LLC | between 900 and 10700
blocks of Boudreaux Rd,
.5 mi west of the
intersection of
Boudreaux and Steubner
Airline Rd | Harris | to storm water pond, to
Willow` | TCEQ, EPA | | | 0.25 | 10 | 15 | 3 | 1 | na | 10100
Boudreaux Road | | Tomball, TX
77375 | 28-Feb-07 | 0.101 | na | 0 | | | 117706 | 1004 | 13985-001 | TX0117706 | Montgomery Co
MUD 89 | 5200 ft north of
intersection of Riley
Fussell Rd and Rayford
Rd | Montgomery | to drainage ditch, to
unnamed trib, to
Woodson Gully, to West
Fork San Jacinto River
Basin | TCEQ, EPA | | | 0.5 | 10 | 15 | 3 | 1 | na | 450 Gears Rd,
Suite 200 | | Houston, TX
77067 | 30-Dec-06 | 0.159 | na | 0 | Two flow
violations on
12/31/06,
10/31/06 | | 117846 | 1008 | 14007-001 | TX0117846 | AquaSource
Development Co | 7150 ft northwest of
intersection of Rose Hill
Rd and Spring Creek,
12500 ft north north east
of FM 2920 an
dMueschke Rd | Montgomery | to Spring Creek | TCEQ | | | 0.13 | 10 | 15 | 3 | 1 | na | 11100 Bittmore
Park Dr. | | Houston, TX
77041 | | | | | | | 118028 | 1008 | 14013-001 | TX0118028 | AquaSource
Development Co | 2900 ft south of FM
1488, 1100 ft east of
Bear Branch Lane, 500 ft
west of Sweetgurn Lane | Montgomery | to unnamed trib, to Bear
Branch, to Bear Branch
Reservoir, to Bear
Branch, to Panther
Branch, to Lake
Woodlands, to Panther
Branch, to Spring Creek | TCEQ | | | 0.05 | 10 | 15 | 3 | 1 | na | 11100 Brittmore
Park Dr. | | Houston, TX
77041 | | | | | | | 118311 | 1010 | 14081-001 | TX0118311 | Martin Realty &
Land, Inc. | 1.2 miles east- northeast
of Portland Rd/ FM 1314 | Montgomery | to unnamed tributary of
White Oak Creek | EPA | | | 0.15 | 10 | 15 | 3 | 1 | na | PO Box 603 | | Porter, TX
77365 | 31-Mar-07 | no discharge | na | 0 | | | 118320 | 1009 | 03627-000 | TX0118320 | Vopak Logistics
Services USA, Inc | 17020 Premium Dr, 0.5
mi southeast of
intersection of US 290
and Kickapoo Rd | Harris | to drainage ditch, to
unnamed trib, to Little
Cypress Creek, to
Cypress Creek | TCEQ, EPA | | | variable | na | na | na | na | na | 2000 West Loop
South, Suite
2200 | | Houston, TX
77027 | 30-Apr-07 | 0.3308 | na | 0 | | | 118371 | 1009 | 11618-003 | TX0118371 | Hunter's Glen MUD | west and adjacent to Fox
Trail Lane, 3400 ft east
of Cypresswood Drive,
5000 ft north of FM 1960 | Harris | to unnamed trib, to
Cypress Creek | TCEQ, EPA | | | 1.4 | 7 | 15 | 2 | 1 | na | c/o Johnson,
Radcliffe, Pertroy
& Bobbit PLLC | 1001
McKinney
Street, Suite
1000 | Houston, TX
77002 | 31-Jan-07 | 0.356 | na | 0 | | | 118605 | 1009 | 03076-000 | TX0118605 | Skinner Nurseries,
Inc. | intersection of Broze Rd
and FM 1960, 5.5 mi
east of IH 45 | Harris | 001: to ditch, to Turkey
Creek, to Cypress Creek.
002: to unnamed trib, to
Cypress Creek | TCEQ, EPA | | | variable | na | na | na | na | report grab | 5301 FM 1960
Rd. West | | Humble, TX
77338 | 31-Oct-06 | sporadic
discharge last
reported- 001:
2.596; 002:
5.192 | na | reports fecal
coliform;
frequently
overdue | see: separate
worksheet for
additional data | | 118818 | 1010 | 14083-001 | TX0118818 | White Oak
Developers, Inc. | 1000 ft west of Robinson
Gully | Montgomery | to Caney Creek | EPA | | | 0.2 | 10 | 15 | 3 | na | 200 | 19221 I-45 South | | Conroe, TX
77385 | | | | | no measurements reported | | NPDES ID | TCEQ
Seg. # | TCEQ
Permit
Number | EPA NPDES
Number | Name | Plant Location | County | Discharge Route | Permit
Information
Source | Status
Notes | Seasonal
Limits | Permitted
flow [MGD] | CBOD
[mg/l] | | NH3N
[mg/l] | Chlorine
Residual
[mg/l] | Fecal
Coliform
[org/100mL] | Address 1 | Address 2 | City/State/
Zip | Flow Date | Flow- effluent gross | Flow- annual | Disinfection
Violations | Other comments | |----------|----------------|--------------------------|---------------------|---|--|------------|---|---------------------------------|-----------------------|--------------------|-------------------------|----------------|----|----------------|--------------------------------|----------------------------------|--|---|----------------------------------|-----------|-------------------------------------|--------------|--|---| | 119181 | 1008 | 12979-004 | TX0119181 | Northgate Crossing
MUD #2 | 5000 ft east southeast of
corssing of Spring Creek
under IH 45 and 8000 ft
northeast of intersection
of Spring Stuebner Rd
and IH 45 | Harris | to HCFCDD J-113-00-00,
to Spring Creek | TCEQ, EPA | | | 0.95 | 10 | 15 | 3 | 1 | na | c/o Coats, Rose,
Yale, Ryman &
Lee PC | 1001
Fannin
Street, Suite
800 | Houston, TX
77002 | 30-Apr-07 | 0.19 | na | 0 | | | 119270 | 1009 | 14106-001 | TX0119270 | Aqua Development,
Inc | 1.3 miles southeast of
the intersection of IH 45
& FM 1960 | Harris | to HCFCD (K1110800) to
Turkey Creek to Cypress
Creek | EPA | | | 0.08 | 10 | 15 | 3 | 1 | na | 11100 Brittmore
Park Dr. | | Houston, TX
77269 | | | | | no measurements reported | | 119504 | 1004 | 14114-001 | TX0119504 | Aqua Development,
Inc | | Montgomery | | | No info.
Available | | unk | | | | | | | | | | | | | | | 119598 | 1008 | 14124-001 | TX0119598 | Magnolia ISD | 2400' east of the
intersection of Hardin
Store Road & | Montgomery | to Spring Creek | EPA | | | 0.02 | 10 | 15 | 3 | 1 | na | Smith
Elementary
WWTP | PO Box 791 | Magnolia, TX
77355 | 28-Feb-07 | 0.065 | na | 0 | | | 119628 | 1008 | 13487-001 | TX0119628 | Timbercrest
Community
Association | 600 feet east of the
intersection of
Kuykendahl Road & | Harris | to Spring Creek | EPA | | | 0.2 | 10 | 15 | 3 | 1 | na | ES, LP | 31200
Northwestern
Highway | Farmington
Hills, MI
48334 | 31-Oct-06 | 0.067 | na | frequently overdue | | | 119857 | 1008 | 14133-001 | TX0119857 | White Oak Utilities,
Inc | 450 ft north of FM 1488,
1100 ft east of
Montgomery/Waller Co
Line | Montgomery | to open ditch, to Log
Gully, to Walnut Creek, to
Spring Creek | TCEQ, EPA | | | 0.2 | 10 | 15 | 3 | 1 | na | 19221 IH 45
South, Suite 370 | | Conroe, TX
77385 | 28-Feb-07 | 0.0373 | na | Thirteen Total
2006: Three
2005: Seven
2004: Three
[chlorine below
minimum] | | | 120073 | 1008 | 14141-001 | TX0120073 | Aqua Development,
Inc | .125 mi southeast of intersection of FM 1488 and FM 2978 | Montgomery | to unnamed trib, to Bear
Branch, to Bear Branch
Reservoir, to Bear
Branch, to Panther
Branch, to Lake
Woodlands, to Panther
Branch, to Spring Creek | TCEQ | | | 0.45 | 10 | 15 | 3 | 1 | na | 1421 Wells
Branch Parkway,
Suite 105 | | Pflugerville,
TX 78660 | | | | | | | 121126 | 1009 | 14172-001 | TX0121126 | Utilities Investment
Company, Inc | 1010 ft northeast of
intersection of US 290
and Cypress Rosehill Rd
and 1145 ft northwest of
intersection of US 290
and Spring-Cypress Rd | Harris | to unnamed rainage
swale, to HCFCDD K145-
02-00, to Dry Creek, to
Cypress Creek | TCEQ, EPA | | | 0.183 | 10 | 15 | 3 | 1 | na | PO Box 2482 | | Conroe, TX
77305 | 28-Feb-07 | 0.056 | na | 0 | 02/28/07,
12/31/06,
12/31/05 flow
violations of .056,
.051, .05 | | 122211 | 1009 | 13893-001 | TX0122211 | Dia-Den LTD | 2500 ft north of
intersection of SH 249
and Coons Rd | Harris | to Pilot Gully, to Cypress
Creek | TCEQ, EPA | | | 0.018 | 10 | 15 | 3 | 1 | na | PO Box 691405 | | Houston, TX
77269 | 31-Mar-07 | 0.002 | na | 0 | | | 122327 | 1015 | 14166-001 | TX0122327 | Woodland Oaks
Utility Company, Inc | 1 mi north of FM 1488
and .5 mi west of Old
Egypt Rd | Montgomery | to force main, to Lake
Creek | TCEQ, EPA | | | 0.498 | 10 | 15 | 3 | 1 | na | PO Box 247 | | Conroe, TX
77305 | 31-Mar-07 | 0.112 | na | 0 | | | 122530 | 1008 | 14181-001 | TX0122530 | Aqua Development,
Inc | 2000' southeast of the
intersection of Huffsmith
and Kohrvi | Harris | to unnamed trib to
unnamed reservoir | EPA | | | 0.075 | 10 | 15 | 2 | 1 | na | 1421 Wells
Branch Pkwy | Suite 105 | Pflugerville,
TX 78660 | 28-Feb-07 | 0.0212 | na | 0 | | | 122963 | 1009 | 14193-001 | TX0122963 | Kennard Tom Foley | 1000 ft south of Cosse
Road and 4000 ft east of
FM 249 | Harris | to Pillot Gully, to Cypress
Creek | TCEQ, EPA | | | 0.035 | 10 | 15 | 3 | 1 | na | 10011 Cossey
Rd, Apt. 100 | | Houston, TX
77070 | 28-Feb-07 | 0.0027 | na | 0 | | | 123366 | 1009 | 14209-001 | TX0123366 | CTP Utilities Inc | 300 ft south of Cypress
Creek, 1800 ft west of
FM 249 | Harris | to unnamed trib, to
Cypress Creek | TCEQ | Plant not built | | 0.18 | 10 | 15 | 2 | 1 | na | 12750 Merit Dr,
Suite 1175 | | Dallas, TX
75251 | | | | | | | 123421 | 1003 | 04249-000 | TX0123421 | Steely Lumber Co.,
Inc. | 1405 Southwood Dr.,
1.5m east of US Hwy | Walker | outfall to ditch to Sheperd
Creek | EPA | | | n/a | | | | | | 1405 Southwood
Dr. | | Huntsville, TX
77340 | 28-Feb-07 | no discharge
01/31/07-
363.17 | na | does not report
chlorine | sporadic
discharges | | 123587 | 1008 | 14218-001 | TX0123587 | Diocese of
Galveston-Houston | 7 mi southeast of
intersection of FM 1488
and SH 249 | Montgomery | to pipeline, to Mill Creek,
to Spring Creek | TCEQ, EPA | Inactive | | 0.015 | 10 | 15 | 3 | na | 200 | PO Box 1408 | | Pinehurst, TX
77362 | | | | | | | 124281 | 1010 | 14285-001 | TX0124281 | C&R Water Supply,
Inc. | 2000' East of Crockett-
Martin Road | Montgomery | to drain ditches to Milam
Br to West Fork Spring B | EPA | | | 0.3 | 10 | 15 | 3 | 1 | na | PO Box 187 | | Willis, TX
77385 | 28-Feb-07 | 0.09 | na | 0 | | | 124583 | 1011 | 14311-001 | TX0124583 | East Montgomery Co
MUD #4 | 4000 ft northwest of
intersection of US 59
and FM 242 | Montgomery | to Mare Branch, to Peach
Creek | TCEQ, EPA | Inactive | | 0.75 | 10 | 15 | 3 | 1 | na | 3700 Buffalo
Speedway, Suite
830 | | Houston, TX
77098 | | | | | | | 124770 | 1009 | 14327-001 | TX0124770 | Harris Co. MUD
#391 | 4000 ft northwest of
Intersection of US 290
and Mueschke Rd | Harris | to Dry Creek, to HCFCDD
K145-00-00, to Dry Creek,
to Cypress Creek | TCEQ, EPA | | | 0.95 | 7 | 15 | 2 | 1 | na | c/o Allen Boone
Humphries
Robinson LLP | 3200
Southwest
Freeway,
Suite 2600 | Houston, TX
77027 | 30-Apr-07 | 0.159 | na | 0 | | | 124907 | 1008 | 14347-001 | TX0124907 | The Woodlands
Land Development
Co. LP | | Harris | | | No info.
Available | | unk | | | | | | | | | | | | | | | NPDES ID | TCEQ
Seg. # | TCEQ
Permit
Number | EPA NPDES
Number | Name | Plant Location | County | Discharge Route | Permit
Information
Source | Status
Notes | Seasonal
Limits | Permitted
flow [MGD] | CBOD
[mg/l] | TSS
[mg/l] | NH3N
[mg/l] | Chlorine
Residual
[mg/l] | Fecal
Coliform
[org/100mL] | Address 1 | Address 2 | City/State/
Zip | Flow Date | Flow- effluent gross | Flow- annual | Disinfection
Violations | Other comments | |----------|----------------|--------------------------|---------------------|--|--|------------|---|---------------------------------|-----------------|--------------------|-------------------------|----------------|---------------|----------------|--------------------------------|----------------------------------|---|---|--------------------------|-----------|----------------------|--------------|--|--| | 124974 | 1009 | 14354-001 | TX0124974 | Harris Co. MUD
#374 | 1.7 mi south of
intersection of SH 290
and Spring Cypress Rd | Harris | to HC MUD #374 channel,
to Cypress Creek | TCEQ, EPA | | | 0.65 | 10 | 15 | 3 | 1 | na | c/o Allen Boone
Humphries
Robinson LLP | 3200
Southwest
Freeway,
Suite 2600 | Houston, TX
77027 | | | | | No
measurements
reported; pipe
active | | 125181 | 1009 | 14390-001 | TX0125181 | Huffsmith-Kohrville,
Inc | 1750 ft west of Hufsmith
Kohrville Rd and 3960 ft
north of Spring Cypress
Rd | Harris | to Pillot Gully, to Cypress
Creek | TCEQ, EPA | Inactive | | 0.053 | 10 | 15 | 3 | 1 | na | 17717 Hufsmith
Kohrville Rd | | Tomball, TX
77375 | | | | | | | 125300 | 1010 | 14379-001 | TX0125300 | East Montgomery Co
MUD #3 | 11000 feet west of the
intersection of FM 1485
and Tree | Montgomery | to Caney Creek | EPA | | | 0.08 | | | | | | Attn: Chip
Callegari | PO Box 2749 | Spring, TX
77383 | 28-Feb-07 | 0.039 | na | | | | 125466 | 1009 | 13942-002 | TX0125466 | Inline Utilities, LLC | 23822 SH 249, 850 ft
north of intersection of
SH 249 and Coons Road | Harris | to HCFCDD to Pilot Gully,
to Cypress Creek | TCEQ, EPA | Inactive | | 0.099 | 10 | 15 | 2 | 1 | na | 9850 1/2
Boudreaux Road | | Tomball, TX
77375 | | | | | | | 125547 | 1008 | 14517-001 | TX0125547 | South Central Water
Company | .5 mi west of intersection
of FM 2978 and Spring
Creek | Harris | to Bogs Gully, to Spring
Creek | TCEQ, EPA | Inactive | | 0.038 | 10 | 15 | 3 | 1 | na | 5818 Beverlyhill
Street | | Houston, TX
77057 | | | | | | | 125601 | 1004 | 14414-001 | TX0125601 | Woodland Lake
Development, LTD | 4600 ft southeast of
intersection of SH 242
and Donwick Dr | Montgomery | to drainage ditch, to West
Fork Sanjacinto River | TCEQ | | | 0.9 | 10 | 15 | 3 | 1 | na | 6024 Fairdale Rd | | Houston, TX
77057 | | | | | | | 125687 | 1008 | 14420-001 | TX0125687 | 2920 Venture, LTD/
Harris County MUD
#401 ⁴ | 4000 ft west and 1500 ft
north of intersection of
FM 2920 and Boudreaux
Rd | Harris | to stormwater pond, to
Willow Creek, to Spring
Creek | TCEQ, EPA | | | 0.6 | 10 | 15 | 2 | 1 | na | 8000 IH 10
West, Suite 700 | | San Antonio,
TX 78230 | 31-Mar-07 | 0.0016 | na | 0 | | | 125806 | 1009 | 14434-001 | TX0125806 | Westside Water,
LLC | 2.1 m northeast of Bauer
Road and US 290 | Harris | to Little Cypress Creek, to
Cypress Creek | EPA | | | 0.1 | 10 | 15 | 3 | 1 | na | 1704 Avenue D | | Katy, TX
77493 | 28-Feb-07 | 0.023 | na | 0 | | | 125881 | 1009 |
14441-001 | TX0125881 | Harris County MUD
#389 | 2640' west & 3432' north
of intersection of Telge | Harris | to Cypress Creek | EPA | | | 0.3 | 10 | 15 | 3 | 1 | na | Aqua Services | 11100
Brittmoore
Park Drive | Houston, TX
77041 | | | | | no measurements reported | | 125938 | 1009 | 14448-001 | TX0125938 | Houston Warren
Ranch Partners, LLC | at intesection of US 290
and Hegar Rd, 0.25 mi
east of Warren Ranch
Rd | Harris | to drainage ditch, to
unnamed trib, to Cypress
Creek | TCEQ, EPA | Inactive | | 0.55 | 10 | 15 | 3 | 1 | na | 480 North Sam
Houston
Parkway East
77060 | | Houston, TX
77060 | | | | | | | 126152 | 1008 | 14475-001 | TX0126152 | Northwest Harris Co.
MUD #19 | 3000 ft east of
intersection of West
Rayford Road and
Kuykendahl Rd | Harris | to pipeline, to Cannon
Gully, to Willow Creek, to
Spring Creek | TCEQ, EPA | Inactive | | 0.7 | 10 | 15 | 3 | 1 | na | 1415 Louisiana
Street, 5th floor | | Houston, TX
77002 | | | | | | | 126161 | 1009 | 14476-001 | TX0126161 | Rouse-Houston, LP | 4000 ft south and 3000 ft
west of intersection of
House Hahl Rd and US
290 | Harris | to Cypress Creek | TCEQ, EPA | | | 0.8 | 7 | 15 | 2 | 1 | na | 10275 Little
Patuxent
Parkway | | Columbia,
MD 21044 | 30-Apr-07 | 0.031 | na | 0 | | | 126209 | 1004 | 14482-001 | TX0126209 | Montgomery Co.
MUD # 83 | 4800 ft west northwest of
intersection of Northpark
Dr and US 59 | Montgomery | to pipeline, to Bentwood
Diversion Channel, to
West Fork San Jacinto
River | TCEQ | | | 0.6 | 10 | 15 | 3 | 1 | na | c/o Schwartz,
Page & Harding
LLP | 1300 Post
Oak Blvd,
Suite 1400 | Houston, TX
77056 | | | | | | | 126306 | 1008 | 14491-001 | TX0126306 | Is Zen Center | 850 ft northeast of the intertsection of Dobbin-Hufsmith Rd and Carraway Ln | Montgomery | to unnamed ditch, to
underground culvert, to
unnamed trib to Spring
Creek | TCEQ, EPA | | | 0.035 | 10 | 15 | 3 | 1 | na | 1400 Graham,
Suite B 514 | | Tomball, TX
77375 | 28-Feb-07 | 0.0012 | na | 02/28/07:
reported .8 w/
minimum limit
of 1 | | | 126713 | 1004 | 14523-001 | TX0126713 | Elan Land
Investments LP | 7200 ft northeast of
intersection of Rayford
Rd and Riley Fuzzel Rd | Montgomery | to Woodson's Gully, to
Tantrough Gully, to West
Fork San Jacinto River | TCEQ | | | 0.6 | 10 | 15 | 3 | 1 | na | 211 Highland
Cross Drive,
Suite 101 | | Houston, TX
77073 | | | | | | | 126799 | 1004 | 14531-001 | TX0126799 | JTM Housting LTD and Quadvest Inc | 5000 ft west of intersection of Riley Fussell Rd and Main Bender Tram, east of intersection of Woodson's Gully and Texas Illinois Natural Gas Pipeline | Montgomery | to Woodson's Gully, to
Tantrough Gully, to
Westfork San Jacinto
River | TCEQ, EPA | | | 0.6 | 10 | 15 | 3 | 1 | na | 19221 IH 45
South, Suite 320 | | Conroe,
Texas 77385 | 28-Feb-07 | 0.039 | na | 0 | | | 126853 | 1011 | 14536-001 | TX0126853 | Flying J Inc. | 4000 ft northwest US
Hwy 59 & south of Hwy
242 | Montgomery | to March Branch to Peach
Creek | EPA | | | 0.05 | 10 | 15 | 3 | 1 | na | 1104 Country
Hills Drive | | Ogden, UT
84403 | 28-Feb-07 | 0.0025 | na | 0 | | | 126934 | 1008 | 14542-001 | TX0126934 | 1774 Utilities, Corp | 500 ft south southwest of
intersection of Magnolia
Industrial Blvd and FM
1774 | Montgomery | to Sulpher Branch, to
Lake Apache, to Sulpher
Branch, to Walnut Creek,
to Spring Creek | TCEQ, EPA | | | 0.15 | 10 | 15 | 3 | 1 | na | 32360 SH 249,
Suite 160 | | Pinehurst, TX
77362 | 28-Feb-07 | 0.0076 | na | 0 | | | NPDES ID | TCEQ
Seg. # | TCEQ
Permit
Number | EPA NPDES
Number | Name | Plant Location | County | Discharge Route | Permit
Information
Source | Status
Notes | Seasonal
Limits | Permitted
flow [MGD] | CBOD
[mg/l] | TSS
[mg/l] | NH3N
[mg/l] | Chlorine
Residual
[mg/l] | Fecal
Coliform
[org/100mL] | Address 1 | Address 2 | City/State/
Zip | Flow Date | Flow- effluent gross | Flow- annual | Disinfection
Violations | Other comments | |----------|----------------|--------------------------|---------------------|--|---|------------|---|---------------------------------|-----------------------|--------------------|-------------------------|----------------|---------------|----------------|--------------------------------|----------------------------------|---|---|-----------------------|-----------|----------------------|--------------|----------------------------|------------------------------| | 127035 | 1008 | 14551-001 | TX0127035 | AUC Group, LP | 10200 ft west southwest
of intersection of FM 149
and FM 1488 | Montgomery | to unnamed trib, to Mill
Creek, to Neidigk Lake, to
Mill Creek, to Spring
Creek | TCEQ | | | 0.95 | 10 | 15 | 3 | 1 | na | 5851 San Filipe
Street | | Houston, TX
77057 | | | | | | | 127094 | 1010 | 14559-001 | TX0127094 | Whitestone Houston
Land, Ltd. | 3800 ft south of
intersection of Roman
Forest Blvd and US 59 | Montgomery | to pipeline, to Caney
Creek | TCEQ | | | 0.9 | 10 | 15 | 3 | 1 | na | Two Gallera
Tower | 13455 Noel
Road, Floor
23 | Dallas, TX
75240 | | | | | | | 127108 | 1011 | 14560-001 | TX0127108 | Whitestone Houston
Land, Ltd. | 4300 ft south of Roman
Forest Boulevard and
8500 ft east of
intersection of US 59
and Caney Creek | Montgomery | to Peach Creek | TCEQ | | | 0.9 | 10 | 15 | 3 | 1 | na | Two Gallera
Tower | 13455 Noel
Road, Floor
23 | Dallas, TX
75240 | | | | | | | 127311 | 1009 | 14576-001 | TX0127311 | 523 Venture, Inc/
Becker Road LP ³ | 1.3 mi south and .7 mi
east of intersection of
US 290 and Becker rd | Harris | to unnamed trib, to
Cypress Creek | TCEQ, EPA | Inactive | | 0.2 | 10 | 15 | 3 | 1 | na | 1 Riverway,
Suite 2050 | | Houston, TX
77056 | | | | | | | 127400 | 1004 | 14586-001 | TX0127400 | LMV Management
Co. LTD | 8200 ft south of
intersection of Riley
Fuzzel Rd and
Woodsons Gully | Montgomery | to unnamed ditch, to
Tantrough Gully, to West
Fork San Jacinto River | TCEQ | | | 0.9 | 10 | 15 | 3 | 1 | na | 700 Louisiana
Street, Suite
2450 | | Houston, TX
77002 | | | | | | | 127663 | 1008 | 14592-001 | TX0127663 | South Central Water
Company | 1560 ft southeast of
intersection of Lone Star
and FM 1774 and 840 ft
south of intersection of
FM 149 and FM 1774 | Montgomery | to unnamed trib, to
Decker branch, to Neidigk
Lake, to Mill Creek, to
Spring Creek | TCEQ, EPA | Inactive | | 0.32 | 10 | 15 | 3 | 1 | na | 5818 Beverlyhill
Street | | Houston, TX
77057 | | | | | | | 127710 | 1010 | 01497-001 | TX0127710 | The Signorelli Co. | 4400 ft west of corssing
of US 59 over White Oak
Creek | Montgomery | to unnamed trib, to White
Oak Creek, to Caney
Creek | TCEQ, EPA | | | 0.6 | 10 | 15 | 3 | 1 | na | 235 I 45 North | | Conroe, TX
77304 | 28-Feb-07 | 0.012375 | na | 0 | | | 127752 | 1004 | 14604-001 | TX0127752 | Northway Land
Company, LTD | 2000 ft east of Aldine
Westfield Rd, 1700 ft
north of intersection of
Fountain Brook Park Ln
and Trinyt Park Ln | Montgomery | to unnamed ditch, to
White Oak Creek, to
West Fork San Jacinto
River | TCEQ | | | 0.58 | 10 | 15 | 3 | 1 | na | 1300 Post Oak
Blvd, Suite 1110 | | Houston, TX
77056 | | | | | | | 127795 | 1008 | 14606-001 | TX0127795 | South Central Water
Company | 3550 ft northeast of
intersection of FM 2920
and Stubner Airline Rd | Harris | to HCFDD M112-00-00, to
Willow Creek, to Spring
Creek | TCEQ, EPA | Inactive | | 0.08 | 10 | 15 | 3 | 1 | na | PO Box 570177 | | Houston, TX
77257 | | | | | | | 127850 | 1008 | 14610-001 | TX0127850 | 501 Maple Ridge,
LTD | 1.75 mi southeast of
intersection of FM 2920
and Telge RD | Harris | to detention pond, to
Willow Creek, to Spring
Creek | TCEQ, EPA | Inactive | | 0.64 | 10 | 15 | 3 | 1 | na | 7850 North Sam
Houston
Parkway West | | Houston, TX
77064 | | | | | | | 127973 | 1008 | 14624-001 | TX0127973 | Rosehill Utilities, Inc | 2 mi north and 120 ft
east of intersection of
FM 2920 and Hegar Rd | Waller | to unnamed trib, to Spring
Creek | TCEQ | | | 0.02 | 5 | 15 | 1 | 1 | na | 17230
Huffmeister Rd | | Cypress, TX
77429 | | | | | | | 128180 | 1009 | 14643-001 | TX0128180 | Northwest Harris Co
MUD #10 | east side of Barker
Cypress Rd, 4600 ft
norht of Huffmeister Rd | Harris | to Little Cypress Creek, to
Cypress Creek | TCEQ, EPA | Inactive | | 0.0945 | 10 | 15 | 3 | 1 | na | c/o Smith,
Murdaugh, Little
& Bonham, LLP | 1100
Louisiana
Street, Suite
400 | Houston, TX
77002 | | | | | | | 128198 | 1009 | 14644-001 | TX0128198 | Redfin Development
Co. Inc. | | Harris | | EPA | Application withdrawn | | unk | | | | | | | | | | | | | | | 128210 | 1009 | 11824-002 | TX0128210 | Northwest Harris Co.
MUD #5 | 3000 ft east and 1300 ft
souht of the intersection
of Telge Rd and Grant
Rd | Harris | to Harris Co. Flood
Control District Ditch to
Faulkey Gully to Cypress
Creek | TCEQ, EPA | | | 0.4 | 10 | 15 | 3 | 1 | na | c/o Smith,
Murdaugh, Little
& Bonham, LLP | 1100
Louisiana
Street, Suite
400 | Houston, TX
77002 | | | | | Pipe inactive-
10/16/2006 | | 128244 | 1002 | 14650-001 | TX0128244 | Pulte Homes of
Texas LP | 1.8 mi south an d.2 mi
west of intersection of
FM 1960 and West of
Lake Houston Parkway | Harris | to South Fork Harmon
Gully, to Lake
Houston | TCEQ, EPA | Inactive | | 0.45 | 5 | 5 | 3 | 1 | na | 16670 Park Row,
Suite 100 | | Houston, TX
77084 | | | | | | | 128295 | 1008 | 14656-001 | TX0128295 | Montgomery Co
MUD #94 | 8300 ft southeast of
intersection of Spring
Trails Ridge and Riley-
Fuzzell Rd | Montgomery | to drainage swale, to
Spring Creek | TCEQ | _ | | 1.08 | 10 | 15 | 3 | 1 | na | c/o Schwartz,
Page & Harding
LLP | 1300 Post
Oak Blvd,
Suite 1400 | Houston, TX
77056 | | | _ | | | | 128333 | 1008 | 14662-001 | TX0128333 | Navasota ISD | 5.5 mi east of SH 6, 100
ft north of SH 105, 800 ft
west of Loop 234 and
CR 309 | Grimes | to unnamed trib, to
Hurricane Creek, to Mill
creek, to Neidigk Lake, to
Mill Creek, to Spring
Creek | TCEQ, EPA | | | 0.024 | 15 | 25 | 6 | 1 | na | PO Box 511 | | Navasota, TX
77868 | 28-Feb-07 | 0.001 | na | 0 | | | 128368 | 1015 | 14711-001 | TX0128368 | Quadvest, LP | 4000 ft north northeast of
intersection of FM 1488
and Community Rd | Montgomery | to pipelilne, to Lake Creek | TCEQ, EPA | Inactive | | 0.32 | 10 | 15 | 3 | 1 | na | Po Box 409 | | Tomball, TX
77377 | | | | | | | NPDES ID | TCEQ
Seg. # | TCEQ
Permit
Number | EPA NPDES
Number | Name | Plant Location | County | Discharge Route | Permit
Information
Source | Status
Notes | Seasonal
Limits | Permitted
flow [MGD] | CBOD
[mg/l] | TSS
[mg/l] | NH3N
[mg/l] | Residual | Fecal
Coliform
[org/100mL] | Address 1 | Address 2 | City/State/
Zip | Flow Date | Flow- effluent gross | Flow- annual | Disinfection
Violations | Other comments | |----------|----------------|--------------------------|---------------------|--|---|------------|---|---------------------------------|-----------------|--------------------|-------------------------|----------------|---------------|----------------|----------|----------------------------------|---|----------------------|-----------------------|-----------|----------------------|--------------|----------------------------|--------------------------------| | 128431 | 1004 | 14671-001 | TX0128431 | Houston
Intercontinental
Trade Center LP | 4400 ft north of FM 1488 | Montgomery | | EPA | | | unk | | | | | | Attn: Micahel P.
Barsi | 14405 Walter
Road | Houston, TX
77014 | | | | | little information provided | | 128457 | 1009 | 14675-001 | TX0128457 | Quadvest, LP | 2400 ft southeast of
intersection of Bauer Rd
and Botkins Rd | Harris | to HCFCDD L114-00-00,
to Little Cypress Creek, to
Cypress Creek | TCEQ, EPA | Inactive | | 0.32 | 10 | 15 | 3 | 1 | na | PO Box 409 | | Tomball, TX
77377 | | | | | | | 128520 | 1008 | 14684-001 | TX0128520 | Jason Andrew
Thompson | The intersection of
Shady Lane & | Montgomery | | EPA | | | unk | | | | | | Woodlands RV
Park WWTP | 28323 FM
2978 | Magnolia, TX
77354 | | | | | little information
provided | | 128651 | 1010 | 14694-001 | TX0128651 | Elan Development,
LP | 4300 Ft east & 1500 ft
North FM 1314 & | Montgomery | to Caney Creek | EPA | Inactive | | 0.18 | 10 | 15 | 3 | 1 | na | 211 Highland
Cross Drive,
Suite 101 | | Houston, TX
77073 | | | | | | | 128660 | 1009 | 14696-001 | TX0128660 | Loan Oak Partners
LP | 1400 ft south of Cy | Harris | | EPA | | | unk | | | | | | 7322 SW Frwy
Suite 1717 | | Houston, TX
77074 | | | | | little information
provided | | 128821 | 1008 | 14711-001 | TX0128821 | Maw Magnolia LTD | | Montgomery | | EPA | | | unk | | | | | | | | | | | | | little information
provided | | 838011 | 1009 | 12224-001 | TX00838011 | Klein ISD | 2000 ft east and 2000 ft
north of intersection of
Stuebner Airline Road
and Spring-Cypress
Creek rd | Harris | to Spring Gully, to
Cypress Creek | TCEQ | | | 0.011 | 10 | 15 | 3 | 1 | na | 7200 Spring
Cypress Road | | Klein, TX
77379 | | | | | | # New Waverly Ventures LTD. Co., TCEQ #01905-000 | Monitoring
Period End
Date | Flow Effluent
Average
(MGD) | Fecal Coliform
Max Grab
(org/100mL) | |----------------------------------|-----------------------------------|---| | 31-Jan-07 | 0.101648 | 177 | | 31-Dec-06 | 0.058852 | | | 30-Nov-06 | 0.294247 | | | 31-Oct-06 | 0.360806 | 210 | | 30-Sep-06 | 0.0155 | | | 31-Aug-06 | 0.0035 | | | 31-Jul-06 | 0.02543 | 927 | | 30-Jun-06 | 0.041967 | | | 31-May-06 | 0.01823 | 67 | CNP UD- Harris County, TCEQ #11239-001 | CNP UD- Harris | County, TCEQ # | | | |-----------------|----------------|--------------------|----------------| | Monitoring | Flow Effluent | Fecal Coliform Max | Fecal Coliform | | Period End Date | Average | 7-day Average | Average | | | (MGD) | (org/100mL) | (org/100mL) | | 30-Apr-07 | 0.0896 | 11 | 3.81 | | 31-Mar-07 | 0.888 | 9.7 | 3.42 | | 28-Feb-07 | 0.849 | 5.3 | 2.74 | | 31-Jan-07 | 0.82 | 3.7 | 2.29 | | 31-Dec-06 | 0.755 | 5.7 | 2.6 | | 30-Nov-06 | 0.815 | 9.4 | 4.03 | | 31-Oct-06 | 0.882 | 7.7 | 3.72 | | 30-Sep-06 | 0.856 | 76.6 | 9.15 | | 31-Aug-06 | 0.885 | 143.1 | 13.85 | | 31-Jul-06 | 0.907 | 65.1 | 11.79 | | 30-Jun-06 | 0.913 | 51.4 | 13 | | 31-May-06 | 0.917 | 21.9 | 7.5 | | 30-Apr-06 | 0.836 | 29.1 | 6.05 | | 31-Mar-06 | 0.866 | 92.9 | 11.05 | | 28-Feb-06 | 0.833 | 98.6 | 8.45 | | 31-Jan-06 | 0.842 | 37.1 | 7.29 | | 31-Dec-05 | 0.828 | 54.9 | 9.79 | | 30-Nov-05 | 0.85 | 7.4 | 4.72 | | 31-Oct-05 | 0.841 | 18.1 | 5.5 | | 30-Sep-05 | 0.908 | 4.8 | 4 | | 31-Aug-05 | 0.85 | 20.7 | 5.17 | | 31-Jul-05 | 0.876 | 51 | 1.5 | | 30-Jun-05 | 0.853 | 7.6 | 1 | | 31-May-05 | 0.835 | 1.1 | 1.02 | | 30-Apr-05 | 0.803 | 1 | 1 | | 31-Mar-05 | 0.803 | na | na | | 28-Feb-05 | 0.799 | 7.3 | 1.63 | | 31-Jan-05 | 0.775 | 4 | 1.61 | | 31-Dec-04 | 0.731 | 3.3 | 1.37 | | 30-Nov-04 | 0.8125 | 4 | 1.81 | | 31-Oct-04 | 0.7935 | 6.6 | 2.86 | | 30-Sep-04 | 0.7844 | 8.7 | 3.7 | | 31-Aug-04 | 0.8178 | 5.4 | 3.9 | | 31-Jul-04 | 0.8139 | 57.6 | 25.19 | | 30-Jun-04 | 0.8511 | 2096.8 | 37.04 | | 31-May-04 | 0.81 | 263 | 8.87 | | 30-Apr-04 | 0.8244 | 60 | 5.2 | | 31-Mar-04 | 0.8343 | 192.4 | 4.92 | | 28-Feb-04 | 0.8401 | 171 | 4.92 | | 31-Jan-04 | 0.8809 | 171 | 4.92 | | 31-Dec-03 | 0.8433 | 238.6 | 5.79 | Time Lane UD- Harris County. TCEQ # 11142-002 | = = = = = = = = = = = = = = = = = | rris County, TCE | Q # 11142-002 | | |-----------------------------------|-----------------------------------|--|--| | Monitoring Period
End Date | Flow Effluent
Average
(MGD) | Fecal Coliform Max
7-day Average
(org/100mL) | Fecal Coliform
Average
(org/100mL) | | 28-Feb-07 | na | na | na | | 31-Jan-07 | na | na | na | | 31-Dec-06 | 0.924387 | <39 | <7 | | 30-Nov-06 | 0.883033 | <2 | <2 | | 31-Oct-06 | 1.092645 | <86 | <18 | | 30-Sep-06 | 0.9104 | <63 | <20 | | 31-Aug-06 | 0.969152 | <25 | <19 | | 31-Jul-06 | 1.04 | 53 | 17 | | 30-Jun-06 | 0.98 | 169 | 45 | | 31-May-06 | 0.941 | 88 | 36 | | 30-Apr-06 | 0.85 | 65 | 26 | | 31-Mar-06 | 0.817 | 7 | 5 | | 28-Feb-06 | 0.836 | 12 | 7 | | 31-Jan-06 | 0.879 | 6 | 5 | | 31-Dec-05 | 0.761 | 54 | 11 | | 30-Nov-05 | 0.761 | 42 | 15 | | 31-Oct-05 | 0.761 | 18 | 6 | | 30-Sep-05 | 0.761 | 37 | 10 | | 31-Aug-05 | 0.761 | 9 | 6 | | 31-Jul-05 | 0.761 | 28 | 8 | | 30-Jun-05 | 0.622 | 18 | 13 | | 31-May-05 | 0.765 | 11 | 7 | | 30-Apr-05 | 0.684 | 21 | 7 | | 31-Mar-05 | 0.81 | 27 | 16 | | 28-Feb-05 | 1.032 | 52 | 36 | | 31-Jan-05 | 0.568 | 63 | 12 | | City of Houst | on, TCEQ #10495 | -146 | | |---------------|-----------------|--------------------|----------------| | Monitoring | Flow Effluent | Fecal Coliform Max | Fecal Coliform | | Period End | Average | 7-day Average | Average | | Date | (MGD) | (org/100mL) | (org/100mL) | | 31-Mar-07 | 4.724 | 77 | 40 | | 28-Feb-07 | 4.678 | 26 | 21 | | 31-Jan-07 | 5.04 | 38 | 23 | | 31-Dec-06 | 4.623 | 32 | 21 | | 30-Nov-06 | 4.729 | 45 | 25 | | 31-Oct-06 | 5.569 | 85 | 37 | | 30-Sep-06 | 4.738 | 38 | 22 | | 31-Aug-06 | 5.256 | 38 | 22 | | 31-Jul-06 | 5.429 | 57 | 26 | | 30-Jun-06 | 5.502 | 29 | 25 | | 31-May-06 | 5.472 | 119 | 65 | | 30-Apr-06 | 5.315 | 67 | 44 | | 31-Mar-06 | 4.993 | 31 | 25 | | 28-Feb-06 | 4.956 | 17 | 16 | | 31-Jan-06 | 5.032 | 46 | 29 | | 31-Dec-05 | 5.258 | 56 | 31 | | 30-Nov-05 | 4.949 | 26 | 22 | | 31-Oct-05 | 5.372 | 61 | 30 | | 30-Sep-05 | 5.384 | 43 | 18 | | 31-Aug-05 | 5.611 | 51 | 32 | | 31-Jul-05 | 5.589 | 52 | 33 | | 30-Jun-05 | 5.549 | 91 | 25 | | 31-May-05 | 5.497 | 58 | 54 | | 30-Apr-05 | 5.378 | 24 | 11 | | 31-Mar-05 | 5.527 | 37 | 20 | | 28-Feb-05 | 5.919 | 39 | 23 | | 31-Jan-05 | 5.544 | 52 | 29 | | 31-Dec-04 | 5.441 | 51 | 40 | | 30-Nov-04 | 6.076 | 106 | 69 | | 31-Oct-04 | 5.297 | 78 | 34 | | 30-Sep-04 | 5.214 | 102 | 53 | | 31-Aug-04 | 5.37 | 152 | 96 | | 31-Jul-04 | 5.585 | 145 | 64 | | 30-Jun-04 | 6.494 | 74 | 56 | # Harris Co MUD #221, TCEQ #12470-001 | Monitoring
Period End Date | Flow Effluent
Average
(MGD) | Chlorine Conc
Average (mg/L) | Fecal Coliform
Geometric Mean
(org/100mL) | |-------------------------------|-----------------------------------|---------------------------------|---| | 04/31/07 | 0.709 | 0.09 | 30.9 | San Jacinto River Authority, TCEQ #12597-001 | San Jacinto River Authority, TCEQ #12597-001 | | | | | | | | |--|---------------|--------------------|----------------|--|--|--|--| | Monitoring | Flow Effluent | Fecal Coliform Max | Fecal Coliform | | | | | | Period End | Average | 7-day Average | Average | | | | | | Date | (MGD) | (org/100mL) | (org/100mL) | | | | | | 28-Feb-07 | 3.405 | 17 | 6 | | | | | | 31-Jan-07 | 3.637 | 25 | 4 | | | | | |
31-Dec-06 | 3.384 | 11 | 5 | | | | | | 30-Nov-06 | 3.344 | 6 | 3 | | | | | | 31-Oct-06 | 3.691 | 5 | 2 | | | | | | 30-Sep-06 | 3.306 | 12 | 2 | | | | | | 31-Aug-06 | 3.37 | 4 | 2 | | | | | | 31-Jul-06 | 3.228 | 21 | 7 | | | | | | 30-Jun-06 | 3.306 | 22 | 14 | | | | | | 31-May-06 | 3.353 | 20 | 8 | | | | | | 30-Apr-06 | 3.206 | 21 | 6 | | | | | | 31-Mar-06 | 3.18 | 2.89 | 2.5 | | | | | | 28-Feb-06 | 3.13 | 41 | 3 | | | | | | 31-Jan-06 | 3.12 | 12 | 5 | | | | | | 31-Dec-05 | 3.068 | 48 | 16 | | | | | | 30-Nov-05 | 3.141 | 13 | 4 | | | | | | 31-Oct-05 | 3.061 | 43 | 5 | | | | | | 30-Sep-05 | 3.162 | 5 | 2 | | | | | | 31-Aug-05 | 3.176 | 5 | 3 | | | | | | 31-Jul-05 | 2.984 | 3 | 2 | | | | | | 30-Jun-05 | 2.959 | 4 | 2 | | | | | | 31-May-05 | 2.948 | 10 | 2 | | | | | | 30-Apr-05 | 2.959 | 10 | 3 | | | | | | 31-Mar-05 | 2.948 | 38 | 11 | | | | | | 28-Feb-05 | 2.932 | 377 | 42 | | | | | | 31-Jan-05 | 3.307 | 4 | 2 | | | | | | 31-Dec-04 | 2.462 | na | na | | | | | | 30-Nov-04 | 2.206 | 5 | 2 | | | | | | 31-Oct-04 | na | na | na | | | | | | 30-Sep-04 | 1.615 | 4 | 2 | | | | | | 31-Aug-04 | 1.901 | 2 | 2 | | | | | | 31-Jul-04 | 1.887 | 25 | 2 | | | | | | 30-Jun-04 | 1.785 | 81 | 13 | | | | | | 31-May-04 | 1.944 | 18 | 10 | | | | | | 30-Apr-04 | 1.865 | 5 | 3 | | | | | | 31-Mar-04 | 1.763 | 29 | 7 | | | | | | 28-Feb-04 | 1.936 | 3 | 2 | | | | | | 31-Jan-04 | 1.766 | 23 | 5 | | | | | | 31-Dec-03 | 1.723 | 7 | 3 | | | | | | 30-Nov-03 | 1.811 | 12 | 4 | | | | | | 31-Oct-03 | 1.742 | 9 | 3 | | | | | | 30-Sep-03 | 1.754 | 8 | 4 | | | | | | 31-Aug-03 | 1.803 | 14 | 6 | | | | | | 31-Jul-03 | 1.634 | 9 | 4 | | | | | | 30-Jun-03 | 1.804 | 15 | 5 | | | | | | 31-May-03 | 1.727 | 9 | 4 | | | | | | 30-Apr-03 | 1.637 | 14 | 4 | | | | | | 31-Mar-03 | 1.795 | 6 | 2 | | | | | | | | | | | | | | #### City of Houston, TCEQ #10495-149 | City of Housto | n, TCEQ #10495- | 149 | | |----------------|-----------------|--------------------|----------------| | Monitoring | Flow Effluent | Fecal Coliform Max | Fecal Coliform | | Period End | Average | 7-day Average | Average | | Date | (MGD) | (org/100mL) | (org/100mL) | | 31-Mar-07 | 0.392 | 30 | 20 | | 28-Feb-07 | 0.323 | 30 | 18 | | 31-Jan-07 | 0.407 | 24 | 21 | | 31-Dec-06 | 0.274 | 30 | 20 | | 30-Nov-06 | 0.278 | 18 | 16 | | 31-Oct-06 | 0.464 | 56 | 27 | | 30-Sep-06 | 0.286 | 20 | 16 | | 31-Aug-06 | 0.304 | 22 | 16 | | 31-Jul-06 | 0.333 | 48 | 18 | | 30-Jun-06 | 0.371 | 26 | 26 | | 31-May-06 | 0.307 | 57 | 31 | | 30-Apr-06 | 0.261 | 78 | 41 | | 31-Mar-06 | 0.259 | 19 | 16 | | 28-Feb-06 | 0.266 | 25 | 19 | | 31-Jan-06 | 0.265 | 82 | 32 | | 31-Dec-05 | 0.295 | 106 | 46 | | 30-Nov-05 | 0.26 | 51 | 26 | | 31-Oct-05 | 0.259 | 451 | 64 | | 30-Sep-05 | 0.272 | 71 | 43 | | 31-Aug-05 | 0.267 | 262 | 114 | | 31-Jul-05 | 0.324 | 33 | 13 | | 30-Jun-05 | 0.257 | 117 | 42 | | 31-May-05 | 0.303 | 325 | 123 | | 30-Apr-05 | 0.267 | 41 | 17 | | 31-Mar-05 | 0.328 | 169 | 95 | | 28-Feb-05 | 0.509 | 215 | 121 | | 31-Jan-05 | 0.323 | 164 | 91 | | 31-Dec-04 | 0.314 | 206 | 76 | | 30-Nov-04 | 0.505 | 252 | 116 | | 31-Oct-04 | 0.29 | 185 | 48 | | 30-Sep-04 | 0.292 | 83 | 44 | | 31-Aug-04 | 0.301 | 133 | 122 | | 31-Jul-04 | 0.344 | 322 | 120 | | 30-Jun-04 | 0.654 | 209 | 115 | | 31-May-04 | 0.448 | 196 | 40 | | 30-Apr-04 | 0.424 | 54 | 25 | | 31-Mar-04 | 0.414 | 66 | 44 | | 28-Feb-04 | 0.514 | 20 | 11 | | 31-Jan-04 | 0.457 | 25 | 14 | | 31-Dec-03 | 0.339 | 20 | 11 | | 30-Nov-03 | 0.506 | 76 | 31 | | Skinner Nurser | Skinner Nurseries-Harris County, TCEQ #03076-000 | | | | | | | | |----------------|--|---------------|----------------|----------------|--|--|--|--| | Monitoring | Flow Effluent | Flow Effluent | Fecal Coliform | Fecal Coliform | | | | | | Period End | Average* 001 | Average* 002 | Max Grab 001 | Max Grab 002 | | | | | | Date | (MGD) | (MGD) | (org/100mL) | (org/100mL) | | | | | | 31-Jan-07 | | | | | | | | | | 31-Dec-06 | | | | | | | | | | 30-Nov-06 | | | | | | | | | | 31-Oct-06 | 2.596 | 5.192 | 570 | 4300 | | | | | | 30-Sep-06 | | | | | | | | | | 31-Aug-06 | | | | | | | | | | 31-Jul-06 | 1.573 | 3.146 | 38 | 56 | | | | | | 30-Jun-06 | 2.832 | 5.664 | 52 | 39 | | | | | | 31-May-06 | 2.242 | 4.484 | 9 | 7 | | | | | | 30-Apr-06 | | | | | | | | | | 31-Mar-06 | | | | | | | | | | 28-Feb-06 | 0.314 | 0.628 | 36 | 682 | | | | | | 31-Jan-06 | 0.944 | 1.89 | 360 | 390 | | | | | | 31-Dec-05 | 1.89 | 3.78 | 476 | 463 | | | | | | 30-Nov-05 | | | | | | | | | | 31-Oct-05 | | | | | | | | | | 30-Sep-05 | | | | | | | | | | 31-Aug-05 | | | | | | | | | | 31-Jul-05 | | | 440 | | | | | | | 30-Jun-05 | | | | | | | | | | 31-May-05 | 0.292 | 0.584 | 560 | 400 | | | | | | 30-Apr-05 | 0.472 | 0.945 | 415 | 450 | | | | | | 31-Mar-05 | 0.212 | 0.424 | | | | | | | | 28-Feb-05 | 0.306 | 0.612 | 430 | 390 | | | | | | 31-Jan-05 | 0.236 | 0.472 | 320 | 460 | | | | | | 31-Dec-04 | 0.319 | 0.638 | 430 | 200 | | | | | | 30-Nov-04 | 1.675 | 3.35 | 51 | 49 | | | | | | 31-Oct-04 | | | | | | | | | | 30-Sep-04 | | | | | | | | | | 31-Aug-04 | | | | | | | | | | 31-Jul-04 | | | | | | | | | ^{*}average of days when discharge occurs (not including zero-flow days)