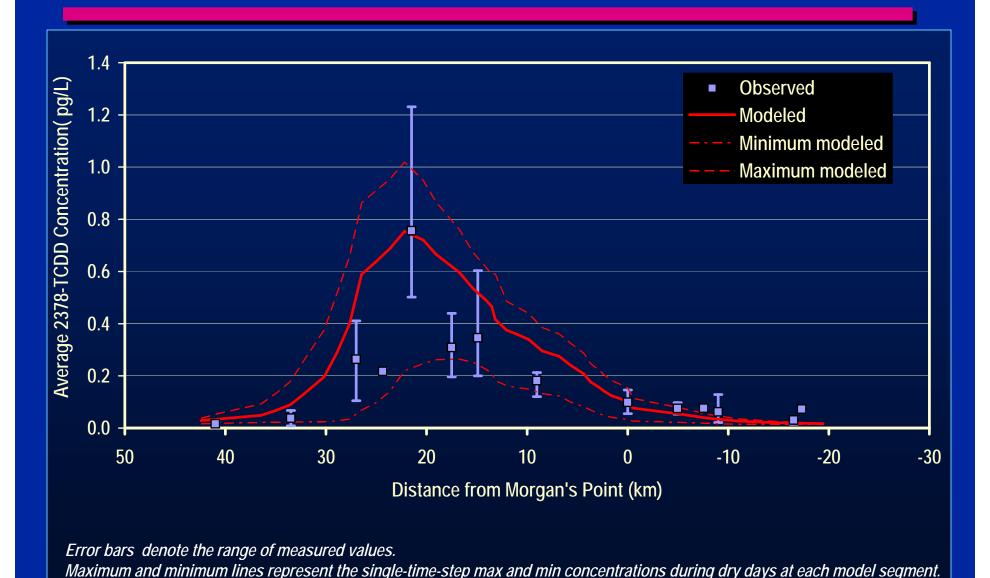
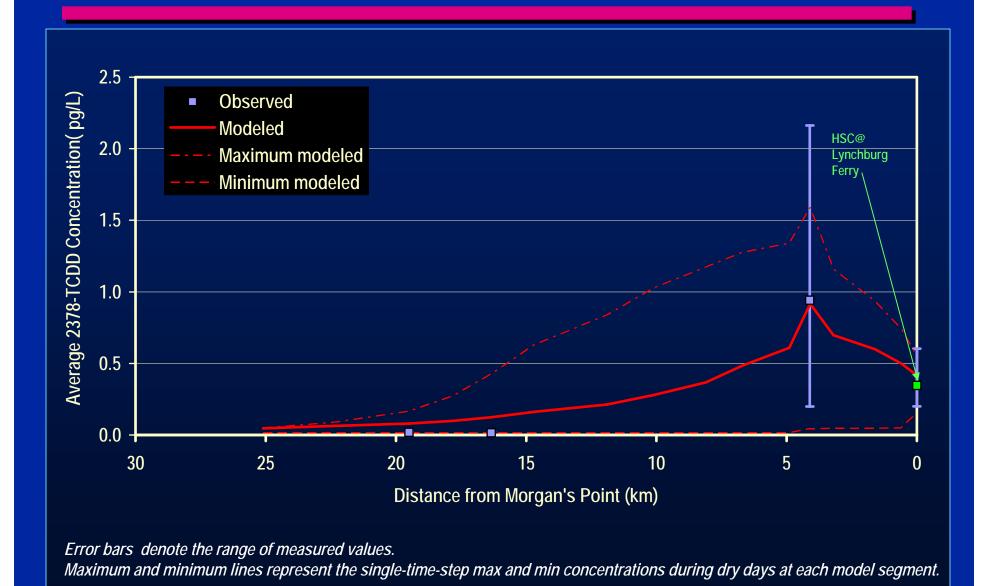

Total Maximum **Daily Load** for Dioxin in the Houston Ship Channel

June 21, 2007

Focus

- WASP modeling update
- TMDL endpoint


WASP final model segmentation


Update WASP 2378-TCDD model

- High settling rates around "hot-spots" to better match narrow peaks observed in measured data
- Average model concentrations for DRY days were used to compare to measured data

WASP 2378-TCDD calibration – main channel

WASP 2378-TCDD calibration – San Jac

TMDL Endpoint

Toxic equivalence of a mixture (TEQ)

- •TEQ is calculated as: $TEQ = \sum C_i \cdot TEF_i$
- •where C_i and $\overline{TEF_i}$ are concentration and toxicity equivalent factor for congener i

•Texas TEFs:

Congener	Texas TEF
2378-TCDD	1
12378-PeCDD	0.5
123478-HxCDD	0.1
123678-HxCDD	0.1
123789-HxCDD	0.1
2378-TCDF	0.1
12378-PeCDF	0.05
23478-PeCDF	0.5
123478-HxCDF	0.1
123678-HxCDF	0.1
123789-HxCDF	0.1

Congeners in orange contribute more than 96% of the TEQ in tissues from the HSC.

Current TX dioxin standards

Average concentration levels (TCEQ WQS 2000)

<u>Saltwater</u> (Fish Only)

 $9.33x10^{-8} \mu g/L = 0.093 pg/L (ppq)$

<u>Fish Tissue</u>* $4.7x10^{-4} \mu g/kg = 0.47 ng/kg (ppt)$

* back-calculated from fish WQS using TCEQ assumptions

Risk management assumptions

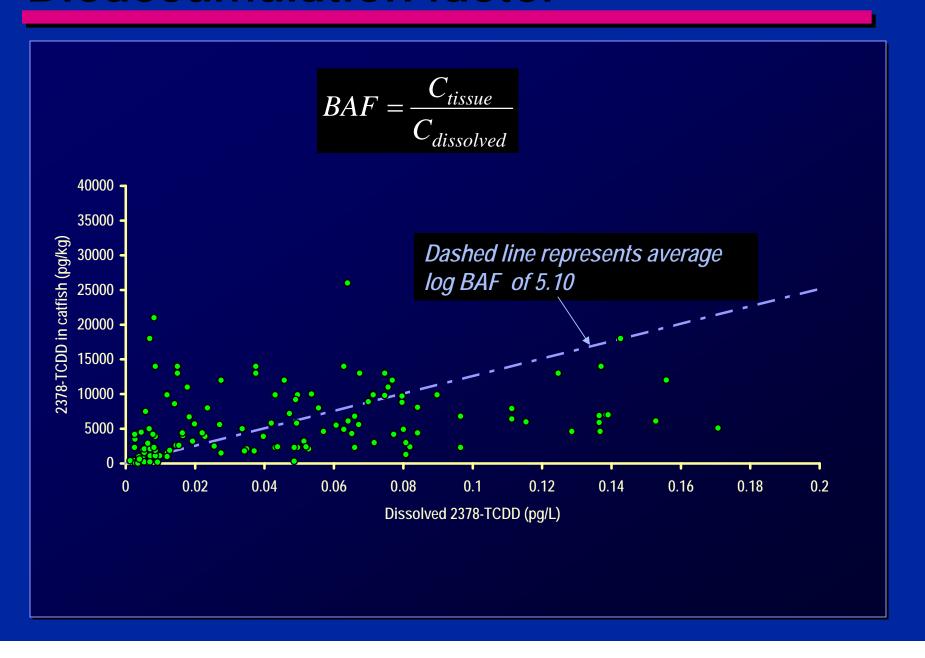
```
WQ_{standard} = RL \times BW/CSF \times CR \times BAF

TRC = RL \times BW/CSF \times CR
```

RL = risk level = 10⁻⁵

CSF = cancer slope factor = 1x10⁵ kg-day/mg

BW = body weight = 70 kg


CR = mean daily consumption rate = 0.015 kg/day

BAF = bioaccumulation factor = 5000 L/kg

TRC = tissue residue concentration = 0.47 ng/kg

 $WQ_{standard} = (10^{-5}x70)/(1x10^{5}x0.015x5000)$ = $9.33x10^{-11}$ mg/L = 0.0933 pg/L

Bioaccumulation factor

Issues to consider for TMDL endpoint

- HSC site-specific BAFs
- Tissue-based standard versus water standard
- Individual congener standards versus TEQ standard

TMDL targets

- Determine WQ targets for congeners that contribute more than 1% to TEQ in tissue using BAFs and suspended-dissolved partitioning ratios (K_p's) from measured data.
- WQ target for a given congener is:

$$C_{w,d} = \frac{TRC * f_i^{TEQ}}{BAF_i * TEF_i}$$

where TRC is the tissue residue criterion (0.47 ng/kg), $C_{w,d}$ is dissolved concentration, f_i^{TEQ} is average contribution to TEQ, TEF is toxic equivalent factor of congener i.

WQ Targets

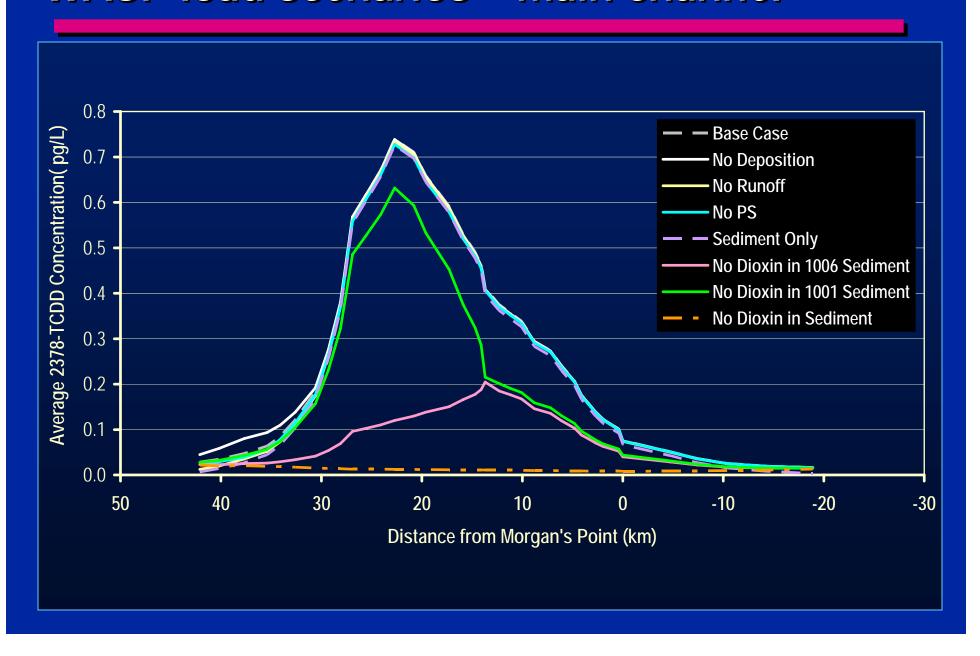
Congener TE		log BAF ^a	Average contribution to TEQ (%)		Water Quality Target - Diss (pg/L) ^c	Average log Kp ^d	WQ Target - Total (pg/L) ^e	
	Tissue ^b		Water	Sediment	(P3/L)			
2378-TCDD	1	5.10	80.3	46.6	51.7	0.0030	5.38	0.022
12378-PeCDD	0.5	4.78	4.5	5.3	6.4	0.0007	5.40	0.005
123678-HxCDD	0.1	4.57	1.4	5.3	4.4	0.0018	5.49	0.016
2378-TCDF	0.1	3.49	2.1	15.4	14.3	0.0319	5.31	0.201
23478-PeCDF	0.5	4.60	6.5	8.4	9.5	0.0015	5.32	0.010
123678-HxCDF	0.1	4.45	1.4	2.3	1.5	0.0023	5.47	0.020
Σ TEO _{major congeners} f			96.2%	83.2%	87.7%	0.0077		0.053
Total TEQg								0.064

^a Average of the logarithms of the catfish/dissolved ratios for samples collected in this project.

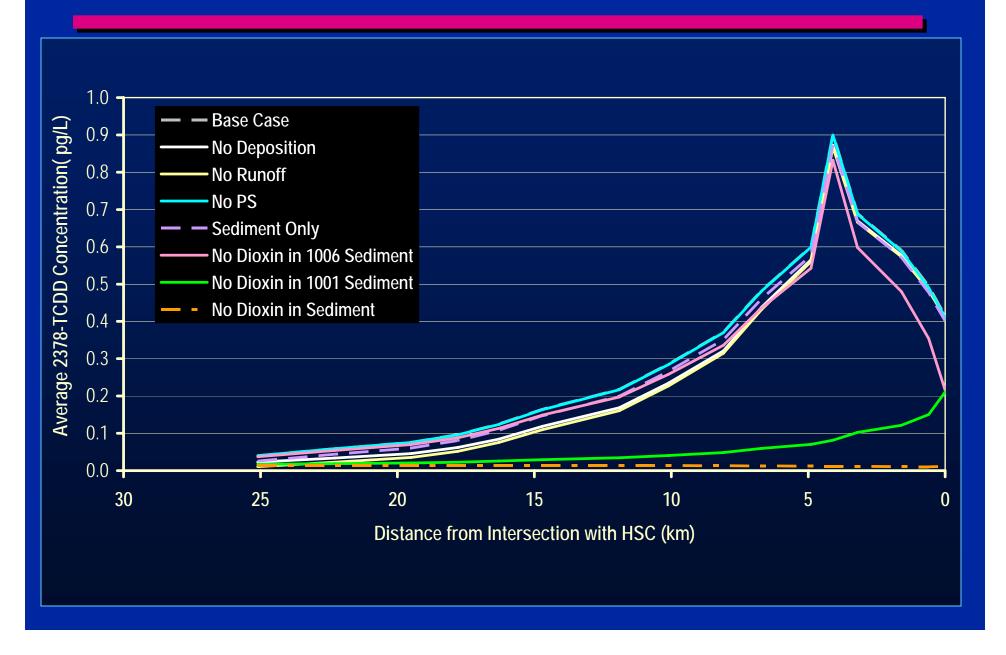
^b Average contribution of each congener to TEQ in catfish, similar contributions were obtained when using crab data.

^c Calculated using equation in previous slide.

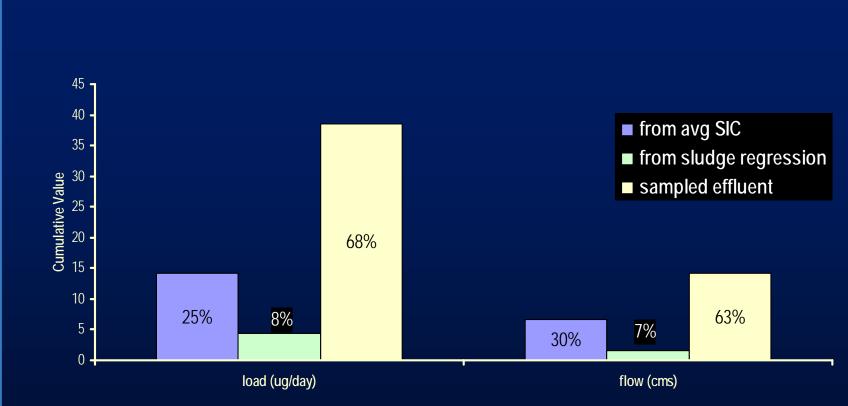
^d Average of the logarithms of the suspended/dissolved ratios for each of the water samples.


e Dissolved + Suspended concentrations. Suspended concentrations are calculated as C_{diss}*10^{log Kp*}TSS_{average}. TSS_{average} is 26 mg/L.

 $^{^{}f}\Sigma$ TEQmajor congeners = (Σ Target_i*TEFi) for the six major congeners.

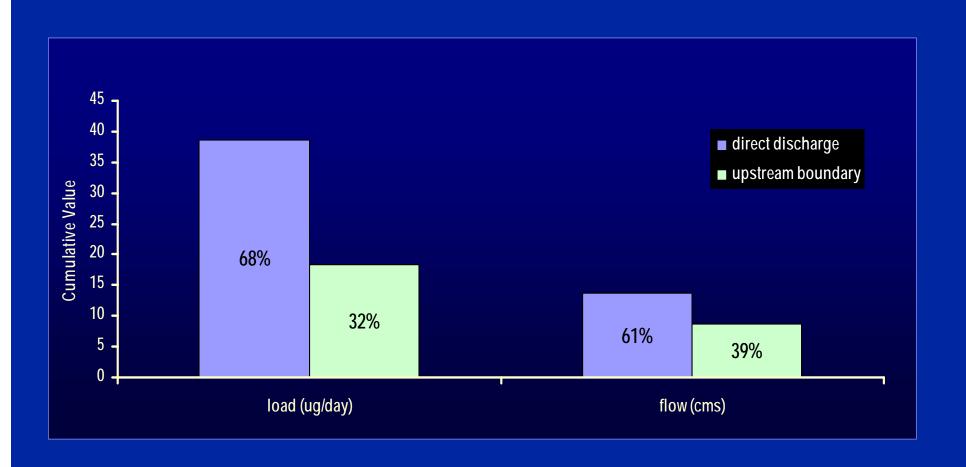

⁹ Total TEQ target = Σ TEQ_{major congeners}/total contribution of the six congeners to TEQ in water = 0.053/0.832

Load Allocation


WASP load scenarios – main channel

WASP load scenarios – San Jacinto River

Measured vs. estimated TCDD loads from PS



100% of the effluent samples exhibited 2378-TCDD concentrations below MDL, ½ MDL used for calculations

7% of the loads calculated using sludge data were derived from concentrations above MDL, the remaining 93% was calculated using % MDL

Loads from average concentrations by SIC code were calculated using effluent data and, thus, correspond to ½ MDL

Direct vs. Boundary Loads from PS

Load spreadsheet – preliminary overall reduction - TCDD

Segment	Net Flow ^a	Allowable Load	In-stream Load	% Overall
	(m ³ /s)	(ng/day) ^b	(ng/day)	Reduction
1014+1017	23.6	44,842	58,267	23%
1007	40.9	77,767	2,320,038	97%
1016	9.1	17,319	53,352	68%
1006	50.4	95,762	854,514	89%
1001 upper	138.1	262,582	3,469,301	92%
1001 lower	138.0	262,314	4,780,351	95%
Old River	0.7	1,331	28,984 ^d	95%
1005 upper	188.2	357,724	1,427,912	75%
2430	0.0	94	1,538	94%
2429	0.0	77	984	92%
2428	0.0	23	143	84%
2427	0.1	150	1,154	87%
2426	2.7	5,061	20,937	76%
2436	0.0	2	8	71%
1005 lower	191.7	364,456	-5,263,367	0%
2438	0.0	0	0	13%
2421	348.6	662,647	-1,326,510	0%
901	2.6	4,910	9,976	51%
Clear Lake	2.1	3,944	1,751 ^d	0%

^a Average of simulated flows out of segment for period July 2002 to April 2005

^b Net outflow times the calculated WQ target for TCDD (0.022 pg/L)

^c Average in-stream load using modeled concentrations and subtracting upstream segment loads

^d No dioxin data are available, thus, values are rough estimates

Next steps

- Model additional congeners
- Run load reduction scenarios
- Update load spreadsheet model and define TMDL