FINAL REPORT

ASSESSMENT OF THE PRESENCE AND CAUSES OF AMBIENT WATER TOXICITY IN RIO GRANDE BELOW AMISTAD RESERVOIR, SEGMENT 2304

Prepared for

TOTAL MAXIMUM DAILY LOAD PROGRAM

TEXAS COMMISSION OF ENVIRONMENTAL QUALITY

P.O. BOX 13087, MC – 150 AUSTIN, TEXAS 78711-3087

Prepared by

PARSONS

PROJECT LEAD ORGANIZATION 8000 CENTRE PARK DR., SUITE 200 AUSTIN, TEXAS 78754 512-719-6000

FEBRUARY 2003

PREPARED IN COORPERATION WITH THE TEXAS COMMISSION ON ENVIRONMENTAL QUALITY AND THE U.S. ENVIRONMENTAL PROTECTION AGENCY

The preparation of this report was financed through grants from the U.S. Environmental Protection Agency through the Texas Commission on Environmental Quality

EXECUTIVE SUMMARY

<u>Rio Grande Segment 2304 (Toxicity in Water)</u>

The Texas Commission on Environmental Quality (TCEQ) is responsible for administering provisions of the constitution and laws of the State of Texas to promote judicious use and the protection of the quality of waters in the State. A major aspect of this responsibility is the continuous monitoring and assessment of water quality to evaluate compliance with state water quality standards which are established within Texas Water Code, §26.023 and Title 30 Texas Administrative Code, §§307.1-307.10. Texas Surface Water Quality Standards 30 TAC 370.4(d) specify that surface waters will not be toxic to aquatic life. Pursuant to the federal Clean Water Act §303(d), states must establish Total Maximum Daily Loads (TMDLs) for pollutants contributing to violations of water quality standards. The purpose of this TMDL Study was to assess the presence and causes of ambient toxicity in seven Texas waterbodies listed on the Draft 2000 Federal Clean Water Act (CWA) §303(d) List in an effort to comply with Texas law.

In order to assess the waterbodies, this study provided goals as follows:

- Confirmation that toxicity is present more than 10% of the time, through the collection of up to date toxicity testing.
- The identification of the substance(s) or factors causing the toxicity where present.
- The identification of the sources of the toxicant(s).
- Confirmation, via chemical analysis, that water quality standards are being maintained.

This study was limited to the following seven waterbodies of concern:

- 1. Alligator Bayou (Segment 0702A) in Jefferson County (toxicity in water and sediment)
- 2. Bryan Municipal Lake (Segment 1209A) in Brazos County (toxicity in sediment)
- 3. Finfeather Lake (Segment 1209B) in Brazos County (toxicity in sediment)
- 4. Vince Bayou (Segment 1007A) in Harris County (toxicity in sediment)
- 5. Arroyo Colorado Tidal (Segment 2201) in Cameron County (toxicity in sediment)
- 6. Rio Grande (Segment 2304) in Kinney, Maverick, and Webb Counties (toxicity in water)
- 7. Rio Grande (Segment 2306) in Presidio County (toxicity in water).

The TCEQ selected Parsons to conduct a more thorough and intensive assessment of the existence of toxicity and identification of likely toxicants in the waterbodies. The Texas Surface Water Quality Standards specify that surface waters will not be toxic to aquatic life. Pursuant to the federal Clean Water Act §303(d), States must establish total maximum daily loads (TMDLs) for pollutants contributing to violations of surface water quality standards. Ambient toxicity testing complements routine chemical monitoring to identify waterbodies with aquatic life impairment. The waterbody assessments are each described in six different reports. Finfeather Lake and Bryan Municipal Lake are described in the same report due to their close proximity and likely cause.

The following table provides information regarding the ambient toxicity in Rio Grande Segment 2304.

Segment & Waterbody Name	Designated Use Impaired	Cause	Area Affected	Number of Samples Tested	Samples Exhibiting Toxicity
2304 Rio Grande	High Aquatic Life	Water Toxicity	Downstream of Eagle Pass, 25 miles	12	2
		Water Toxicity	Downstream of Del Rio, 25 miles	6	2

Segment 2304 of the Rio Grande was identified on the State of Texas 1999 CWA §303(d) lists as "not supporting" aquatic life uses due to toxicity of ambient water downstream of Del Rio and only "partially supporting" aquatic life uses due to occasional toxicity in ambient water and sediment downstream of Eagle Pass and Laredo. In consideration of additional data obtained in 1998 and 1999, the TCEQ deleted the 1999 §303(d) list reference to partially supporting aquatic life uses due sediment toxicity downstream of Eagle Pass and water and sediment toxicity downstream of Laredo. The draft 2000 §303(d) list retained the "not supporting" aquatic life uses due to ambient water toxicity downstream of Del Rio and Eagle Pass.

Parsons conducted nine sampling events on three stations (13205, 13208, and 13560) in the upper two-thirds of Segment 2304 of the Rio Grande. No significant lethality effects were observed to either the *C. dubia* or the fathead minnow for this sampling. Sublethal effects were observed only once on *C. dubia* at Station 13208 in April 2001. No other significant sublethal effects were observed with either species on the other samples.

Although not part of this study, the TCEQ collected three routine samples each from Stations 13196 and 15817 during this study and under a separate QAPP, but both stations are below Laredo in the lower third of the segment. Sublethal effects were observed in samples collected at Stations 13196 and 15817 on one occasion, April 29, 2001.

CONCLUSION

This project focused on the upper two-thirds of Segment 2304 that was not supporting aquatic life uses due to water toxicity. The data in this report indicates aquatic life uses in the upper two-thirds of Segment 2304 are fully supported with regard to ambient water toxicity.

Table 8.1 is a summary of toxicity testing results for samples collected over the last 5 years. The data presented in Table 8.1 were extracted from Table 2.1 (Historical Water Toxicity Results from July 28, 1997) and Table 5.2 (7-Day Water Survival and Growth Results ending April 23, 2002). Table 8.1 indicates no significant difference in the last 40 chronic lethality tests or the last 18 sublethal effect tests using the fathead minnow. Therefore, the ambient water quality in Segment 2306 is not toxic to sensitive vertebrate species.

Table 8.1Number of Chronic Toxicity Text Failures / Total Number of TestsApril 22, 1997 – April 23, 2002

Station	Lethality		Subl	Total	
	Fathead	C. dubia	Fathead	C. dubia	
13205*	0/13	0/14	0/6	1/14	1/47
13208	0/6	0/9	0/6	1/9	1/30
13560*	0/11	0/14	0/6	3/15	3/46
13196	0/5	0/5	0/0	1/4	1/14
15817	0/5	0/5	0/0	1/4	1/14
Total	0/40	0/47	0/18	7/46	7/151
Percent	0%	0%	0%	15%	5%

* Test result using ambient water collected on January 14 and February 26, 2002 at Station 13205 and October 27, 1998 are not included in Table 8.1 because the river flow was below the applicable 7Q2 flow rates (See §§ 4.9, p. 4-11).

The table also documents no toxicity in the last 47 chronic lethality tests using the *C. dubia*. Sublethal effects to *C. dubia* were observed in 7 of the last 46 (15%) ambient water samples. According to currently adopted assessment methodology, the 15 percent sublethal effects justify pursuing a TIE/TRE and developing a TMDL. However, practically, a TIE/TRE and TMDL are not appropriate in this situation. Four out of the 5 sampling stations had only one sample in the last five years exhibiting unacceptable sublethal effects. The 3 sublethal effects for Station 13560 occurred over a 2-year, 10-month period. Table 8.2 provides the dates these samples were collected.

Stations	Last Sublethal Sample Collection Date	Prior Sublethal Effects Sample Collection Date
13205	September 22, 1997	February 1993
13208	April 25, 2001	February 1993
13560	July 25, 2000 March 3, 1998 September 23, 1997	March 3, 1998 September 23, 1997 June 5, 1995
13196	April 29, 2001	October 21, 1992
15817	April 29, 2001	*

Table 8.2Sublethal Effects Sample Collection Dates

* The April 29, 2001 sample is the only sample exhibiting sublethal effects out of 6 samples collected since June 6, 1995.

Table 8.2 documents the lack of persistent sublethal effects at a single station or season. Also, samples collected exhibiting sublethal effects were from stations separated by many miles in this 226-mile segment. Therefore, conducting a TIE is not feasible at this time, due to random. Inconsistent and small effects related to sublethal responses to Ceriodaphnia dubia in this segment. If additional toxic samples could be collected in a reasonable amount of time, performing a TIE would most likely identify different causes, if the causes could be identified at all. Performing a TIE/TRE would be impossible with inconsistent toxicity. The source could be from point or non-point source or from Mexico. Developing a TMDL may be impractical if the evidence is only inconsistent sublethal effects that cannot be positively linked to a source in Texas. Enforcing broad regulatory non-point source controls based on the evidence provided in this report may be met by legal challenges from landowners. Parsons does not recommend including this segment in Category 5 (303(d) List) if inclusion requires a TIE/TRE and TMDL. Parsons recommends revising the adopted assessment policy to require persistent sublethal effects, such as greater than 50 percent sublethal effects if lethal effects occur less than 10 percent of the time, before labeling a segment as not meeting aquatic life using due to toxicity. Parsons recommends continued toxicity testing within this segment to monitor any changes in toxicity.

TABLE OF CONTENTS

LIST OF F	IGURESii
LIST OF T	ABLESii
ACRONYN	IS AND ABBREVIATIONSiii
SECTION	1 INTRODUCTION
1.1 Ba	ckground Information1-1
1.2 De	scription of the Sampling Stations
SECTION	2 PROBLEM DEFINITION
SECTION	3 ASSESSMENT STRATEGY AND OBJECTIVES
SECTION -	4 ASSESSMENT METHODS
4.1 Stu	1dy Design
4.2 Sa	mpling Method
4.2.1	General Water Chemistry
4.2.2	Trace Metals
4.3 Sa	mpling Events
4.3.1	Sampling on April 25, 2001
4.3.2	Sampling on May 23-25, 2001
4.3.3	Sampling on June 7, 2001
4.3.4	Sampling on June 19 - 21, 2001
4.3.5	Sampling on July 17 - 19, 2001
4.3.6	Sampling on August 7 - 9, 2001
4.3.7	Sampling on January 15, 2002
4.3.8	Sampling on February 26, 2002
4.3.9	Sampling on April 23, 2002
4.4 An	alytical Methods
4.5 To	xicity Testing Methods
4.6 Qu	ality Control Requirements
4.6.1	Sampling Quality Control Requirements and Acceptability Criteria
4.6.2	Laboratory Measurement QC Requirements and Acceptability Criteria
4.6.3	Failures in QC Requirements
4.7 Da	ta Management
4.8 Str	eam Habitat Characterization
4.9 Flo	w Rate Monitoring
SECTION	5 AMBIENT WATER RESULTS
5.1 Fie	eld Measurements

5.2 Ambient Wat	ter Toxicity Results	5-1
5.3 Chemical Ana	alysis Results	5-4
SECTION 6 TOXIC	CITY IDENTIFICATION EVALUATION	6-1
SECTION 7 SOURC	CE ANALYSIS AND IDENTIFICATION	7-1
SECTION 8 SUMM	ARY AND CONCLUSIONS	8-1
SECTION 9 REFER	RENCES	9-1

APPENDICES:

LIST OF FIGURES

Figure 1.1	Sampling Sites at Segment 2304, Rio Grande Below Amistad Reservoir	1-2
Figure 3.1	Conceptual Toxicity Strategy Flow Diagram	3-2

LIST OF TABLES

Table 2.1	Historical Water Toxicity Results	
Table 2.2	Rio Grande Segment 2304 Historical Water Chemistry Detections	
Table 4.1	Summary of Water and Sediment Sampling Events	
	in the Rio Grande Segment 2304	
Table 5.1	Field Measurements.	
Table 5.2	Ambient Water Toxicity Results	5-3
Table 5.3	Chemical Analysis Detections	

ACRONYMS AND ABBREVIATIONS

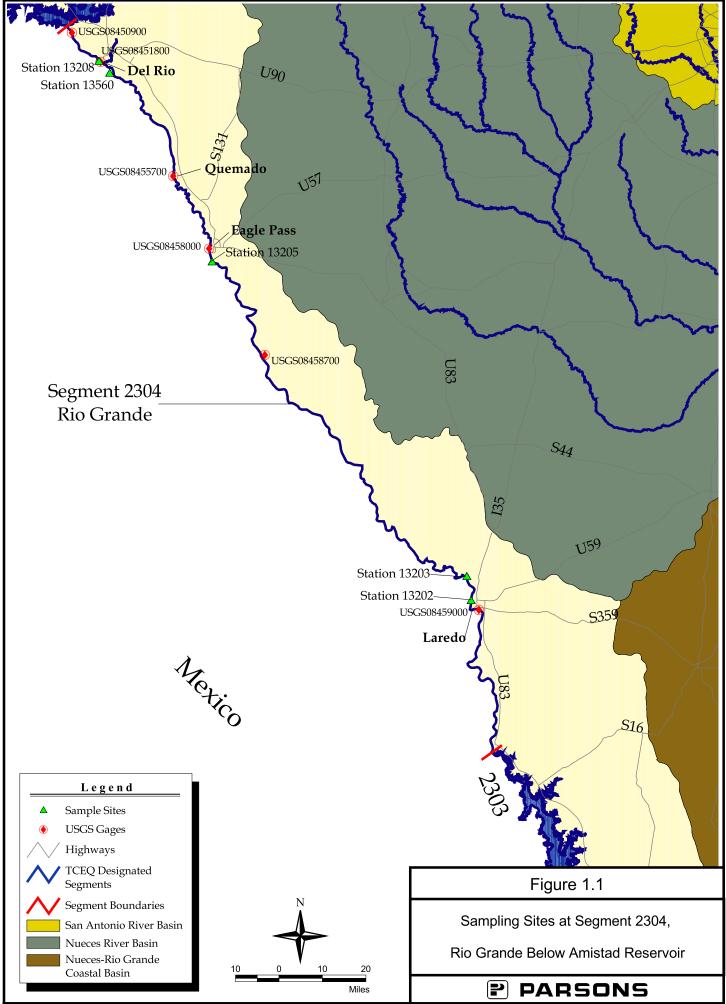
- cfs Cubic feet per second
- CWA Clean Water Act
- GPS Global positioning system
- HDPE High density polyethylene
- LCS Laboratory control standards
 - m Meter
- MS Matrix spike
- MSD Matrix spike duplicate
- mg/L Milligram per liter
- QAPP Quality assurance project plan
- QC Quality control
- TAC Texas Administrative Code
- TIE Toxicity identification evaluation
- TMDL Total maximum daily load
- TCEQ Texas Commission on Environmental Quality
- TNRCC Texas Natural Resource Conservation Commission
- TSWQS Texas Surface Water Quality Standards
- USEPA U.S. Environmental Protection Agency
- USIBWC U.S. International Boundary Water Commission
 - USGS United states Geological Survey

SECTION 1 INTRODUCTION

The federal Clean Water Act (CWA), §305(b), requires states to produce a periodic inventory comparing water quality conditions to established water quality standards for surface waters in each state. Water quality standards for the State of Texas are specified in Texas Water Code, §26.023 and Title 30 Texas Administrative Code (TAC) §§307.1-307.10. Texas Surface Water Quality Standards (TSWQS) 30 TAC 307.4(d) specify that surface waters will not be toxic to aquatic life. Pursuant to the CWA Section 303(d), states must establish a total maximum daily load (TMDL) for pollutants contributing to exceedances of water quality standards.

1.1 BACKGROUND INFORMATION

Segment 2304 of the Rio Grande was identified on the State of Texas 1999 and draft 2000 §303(d) lists as "not supporting uses" for contact recreation due to bacteria levels in an area downstream of Laredo, Del Rio, and a small section near Eagle Pass, Texas. Segment 2304 is also listed as "partially supporting uses" for aquatic life due to the toxicity of ambient water in an area downstream of Eagle Pass; and "not supporting uses" due to the toxicity of ambient water in an area downstream of Del Rio.


Segment 2304 of the Rio Grande is a freshwater segment, 226 miles long which begins at the confluence of the Arroyo Salado (Mexico) in Zapata County (U.S.) and ends at Amistad Dam in Val Verde County (U.S.). Segment 2304 receives pollutant loading from domestic and industrial point source discharges and non-point source storm water runoff from the U.S. and Mexico sides of the border.

The purpose of this Toxicity Assessment Study is to verify the presence of toxicity in the water of the Rio Grande and if toxicity is found, determine its cause(s) and source(s) in the segment and/or its tributaries. Figure 1 provides a map of Segment 2304 and the sampling station locations.

1.2 DESCRIPTION OF THE SAMPLING STATIONS

Three Texas Commission of Environmental Quality (TCEQ) sampling stations on Segment 2304 of the Rio Grande were selected for monitoring in this Toxicity Assessment Study. Criteria used to select stations for this investigation were: 1) the station must be a TCEQ station for which past monitoring data are available; 2) past monitoring by TCEQ indicated water quality impairment at the station; and 3) pollutant loading is known or suspected near the station. Descriptions of the sampling stations are as follows:

- Station 13205: Rio Grande 8.7 miles downstream from Eagle Pass/Piedras Negras International Bridge, near Irrigation Canal Lateral 50, at River Mile 488.3.
- Station 13560: Rio Grande 4.5 miles downstream of Del Rio at Moody Ranch.
- Station 13208: At USGS Gauge 8451800 on Rio Grande near Del Rio.

J:\740\740785 TNRCC Tox\738250\GIS\tmdl_update.apr

SECTION 2 PROBLEM DEFINITION

Draft guidance developed by TCEQ for Texas Surface and Drinking Water Quality Data (TCEQ 2002), requires that data used to evaluate waterbodies for §303(d) listing and TMDL development be less than 5 years old. Therefore, tasks within this Toxicity Assessment Study include additional water sampling. Results of the analysis will determine whether to proceed with TMDL development or establish the basis for removing Segment 2304 from the §303(d) list. Table 2.1 summarizes the recent historical water toxicity results from August 1989 to July 2000.

The draft 2000 TCEQ §305(b) Report and corresponding draft 2000 §303(d) List were based on data collected on June 1, 1994 through May 31, 1999. A total of 67 ambient water toxicity tests were performed on 34 ambient water samples collected during this period. There were no statistically different toxic effects to the Fathead minnow. The C. dubia survival toxicity test was performed on 33 of the 34 ambient water samples with two significantly different lethal effects and six significantly different sublethal toxic effects. Out of the 34 water sample, eight or 24 percent were found to be toxic (lethal and/or sublethal) to the two surrogate species. This and other data caused the TCEQ to place Segment 2304 on the draft §303(d) List. Significant difference was determined using standard statistical tests with an alpha of 0.05 for both lethal and sublethal responses. Statistical results did not change with an alpha equal to 0.01.

The TCEQ recently published the draft 2002 Texas Water Quality Assessment and List of Impaired Waters that combined the §305(b) Report §303(d) List. According to USEPA guidance, waterbodies will be classified according to Categories 1 through 5 as follows:

- Category 1 All designated uses are met
- Category 2 Some designated uses are met
- Category 3 Not assessed for any use
- Category 4 Impaired but not needing a TMDL
 - Category 4a TMDL has been completed (approved)
 - Category 4b Expected to meet water quality standards soon
 - Category 4c Impairment not caused by a pollutant
 - Category 4d Undergoing water quality standards review
 - Category 4e May require a TMDL but additional data needed
- Category 5 A TMDL is required
 - Category 5a A TMDL is underway, scheduled, or will be scheduled.

Category 5b - A review of the water quality standards will be conducted before a TMDL is scheduled.

Category 5c - Additional data and information will be collected before a TMDL is scheduled.

Table 2.1 Historical Water Toxicity Results

		% Su	ırvival	Sub-Let	hal Effect
Rio Grande 2304				Growth	# Neonates
Rio Grande 2304		Pimephales	Ceriodaphnia	Pimephales	Ceriodaphnia
		Promelas	dubia	Promelas	dubia
	Control	93	100		17.5
July 24 - July 25, 2000	13205	97	100		16.4
	13560	100	100		14.4
	Control	97	100		18.4
May 23, 2000	13196	97	100		18.7
	15817	100	100		18.6
March 13, 2000	Control	100	100		20.0
Maron 10, 2000	13205	97	100		20.1
March 21, 2000	Control	100	100		18.5
March 21, 2000	13560	100	100		17.7
	Control	93	100		17.4
October 31, 1999	13196	97	100		17.8
	15817	97	90		16.1
March 24, 1999	Control	97	100		17.6
	13205	97	100		18.0
	Control	97	100		18.3
October 12 - October 27, 1998	13205	97	100		18.0
	13560	<7Q2	<7Q2		< 7Q2
	Control	97	100		16.0
June 16, 1998	13205	100	100		18.3
	13560	97	100		19.9
March 3, 1998	Control	97	100		17.9
	13560	93	90		13.9
March 31, 1998	Control	97	100		17.0
March 31, 1990	13205	100	100		19.1
	Control	97	100		17.1
September 22 - September 23, 1997	13205	97	100		15.0
	13560	100	100		14.6
July 28, 1997	Control	100	100		17.6
caly 20, 1001	13194	97	100		19.2
November 18, 1996	Control	97	100		16.1
	13205	100	90		13.7
June 24, 1996	Control	80	100		15.1
	13205	85	100		20.4
March 4, 1996	Control	90	100		18.3
	13205	100	100		17.1
January 22, 1996	Control	97	100		13.5
	13205	100	100		12.5
November 7, 1995	Control	100	100		17.8
	13196	93	100		20.2
October 9, 1995	Control	97	100		18.3
	13205	100	90		20
July 26, 1995	Control	97	80		14.1
• • •	13196	93	100		18.7
	Control	93	90		18.7
	13560	93	60		16.3
	Control	93	100		20.1
June 5 - June 6, 1995	13196	90	100		18.7
	15817	97	90		19.6
	Control	100	90		18.7
	13205	97	60		12.5

Table 2.1 Historical Water Toxicity Results

Rio Grande 2304		% Sı	ırvival	Sub-Lethal Effect	
				Growth	# Neonates
Rio Granue 2504		Pimephales Promelas	Ceriodaphnia dubia	Pimephales Promelas	Ceriodaphnia dubia
May 15, 1995	Control	93	90		18.4
Way 15, 1995	13205	100	90		19.8
April 4, 1995	Control	100			
April 4, 1995	13560	93			
	Control	93	100		20
March 27 - March 28, 1995	13205	93	100		18.2
	13560	93	100		16.4
January 31, 1995	Control	100	100		18.5
Sundary ST, 1996	13196	90	100		17.7
December 6, 1994	Control	100	100		18.3
	13560	97	90		13.4
December 5, 1994	Control	97	100		18.3
	13205	97	100		17.3
October 20, 1994	Control	93	100		18.9
	13196	100	100		21.2
	Control	90	100		19.8
September 26 - September 27, 1994	13205	97	100		18.2
	13560	100	90		17.4
July 27, 1994	Control	90	100		19.5
	13196	93	100		17.7
June 14, 1994	Control	93	90		18.7
00110 14, 1004	13560	93	100		21.2
June 13, 1994	Control	93	90		18.5
ouno 10, 1004	13205	93	90		20.2
April 14, 1994	Control	97	100		19.2
· · · · · · · · · · · · · · · · · · ·	13196	100	100		19.9
	Control	93	100		19.5
February 28 - March 1, 1994	13205	100	100		18.8
	13560	97	100		20.9
October 28, 1993	Control	97	100		16.8
	13196	93	100		17.2
• · · • • • · · · · · · · · · · · · · ·	Control	97	100		17.3
October 25 - October 27, 1993	13205	100	90		14.7
	13560	100	100		19.0
	Control	93	100		22.1
	13100	100	60		4.3
	13101	90	0		a : =
	13196	93	100		21.5
March 22 - March 25, 1993	13140	80	0		
······································	13205	100	90		20.5
	13718	93	50		9.6
	13123	97	100		20.1
	13124	0	100		16.5
	13206	100	100		21.9

Table 2.1 Historical Water Toxicity Results

Rio Grande 2304		% Sı	ırvival	Sub-Lethal Effect	
				Growth	# Neonates
Rio Grande 2304		Pimephales Promelas	Ceriodaphnia dubia	Pimephales Promelas	Ceriodaphnia dubia
March 40, 4002	Control	93	100		19.7
March 16, 1993	13207	100	100		22.2
March 8, 1002	Control	97	100		18.7
March 8, 1993	13205	100	90		22.2
	Control	97	100		21.6
	13711	97	100		22.2
	13717	93	100		20.5
	13115	93	100		19.7
February 10 - February 12, 1993	13129	97	90		21.4
	13716	100	100		20.8
	13208	93	90		18.7
	13604	100	100		20.2
	13715	90	100		16.0
January 26, 1993	Control	97	100		19.2
Sandary 20, 1995	13196	97	100		22.1
December 15, 1992	Control	97	100		18.7
Becchiber 10, 1992	13560	100	100		19.2
November 3, 1992	Control	97	90		16.3
	13205	93	90		12.1
October 21, 1992	Control	97	100		15.8
	13196	93	100		12.2
June 30, 1992	Control		100		13.5
June 30, 1992	13205		90		15.4
June 9, 1992	Control	97	100		15.7
	13196	90	100		14
March 11, 1992	Control	90	100		16.9
	13196	93	90		17.6
March 2, 1992	Control	97	100		16.2
· · · , · · ·	13205	97	100		16.3
December 11, 1991	Control	97	100		19
,	13196	93	100		16.8
December 3, 1991	Control	97	100		16.7
•	13205	90	100		18.8
November 18, 1991	Control	97	100		10.3
	13196	100	90		11.4
February 4, 1991	Control	90	100		15
. .	13205	93	100		13.7
	Control	93	100		20.1
	13196	100	100		19.6
August 23, 1989	13197	100	100		19.5
	13200	100	100		20.4
	13201	93	100		18.4

<7Q2 = Flow in river below 7Q2 Bold - denotes significant difference from the control

Future §303(d) Lists will include waterbodies listed in Category 5. Segment 2304 is listed in the draft 2002 TWQMAR as a Category 4e waterbody. The additional water toxicity data provided in Section 4 of this report justifies recategorizing this segment as a Category 2 due to lack of toxicity. Exceedances of the bacteria TSWQS was not addressed in this report and may prevent the segment from being listed in Category 1.

In November 1996, the TCEQ published the Bi-National Rio Grande/Rio Bravo Toxic Substance Study. The Phase 2 data review for the Eagle Pass/Piedras Negras Reach portion of the Rio Grande includes sampling at TCEQ Station 13205 and Station 13208. The Study also includes results of sampling at or near Station 13560. These stations were referenced in that report as Stations No. 10 (13205), Station No. 7 (13208), and Station No. 8 (13560). Under the heading "*Toxicity*" on page 36, the report states, "*Significant effects of water samples on water fleas or fathead minnows were not observed at any site in the reach*."

Table 2.2 provides historical chemical analysis of the river water in Segment 2304 during the time period of January 1995 to March 2001.

There were three pH exceedances in the historical data.

Station	Date	pН
13205	1/24/1995	9.6
13208	1/19/2000	9.3
13560	1/19/2000	9.2

Table 2.2Rio Grande Segment 2304 Station 13205Historical Water Chemistry Detections

PARAMETER	Historical Average	Historical Minimum		TSWQS* Aquatic Life- Chronic/Hum an Health	UNITS
Alkalinity, Total (mg/L as CACO3)	135.2	108.0	156.0		mg/L
Aluminum, Dissolved (μg/L as AL)	9.5	ND	95.0	991/NA	µg/L
Aluminum, Total (μg/L as AL)	1100	1100.0	1100.0		µg/L
Arsenic, Dissolved (µg/L as AS)	2.7	ND	6.49	190/50	µg/L
Arsenic, Total (µg/L as AS)	3.7	3.7	3.7		µg/L
Biochemical Oxygen Demand (mg/L, 5 Day - 20 Deg C)	2.5	ND	5.0		mg/L
Calcium, Dissolved (µg/L as CA)	77.9	65.4	95.1		µg/L
Carbon, Total (mg/L as C)	2.6	ND	5.0		mg/L
Chloride (mg/L as CL)	129.8	12.4	200.0	200	mg/L
Chlorophyll-A μ g/L Spectrophotometirci acid, Meth	2.1	ND	13.8		µg/L
Copper, Dissolved (µg/L as CU)	0.5	ND	7.0	26.88/NA	µg/L
Hardness, Dissolved, Calculate (mg/L as CACO3)	288.1	222.0	323.0		mg/L
Hydrocarbon in Water, Freon Ext, Chromat, IR, mg/L	39.0	39.0	39.0		mg/L
Magnesium, Dissolved (mg/L as MG)	21.3	14.2	27.1		mg/L
Magnesium, Total (mg/L as MG)	19.3	19.3	19.3		mg/L
Nitrite Plus Nitrate, Total 1 Det. (mg/L as N)	0.3	0.1	0.65		mg/L
Nitrogen, Kjeldahl, Total (mg/L as N)	0.5	0.27	0.92		mg/L
Nitrate Plus Nitrite, Total (mg/L)	0.5	0.11	1.3		mg/L
Oxygen, Dissolved (mg/L)	8.3	3.9	14.3	5.0	mg/L
pH (Standard Units)	7.9	6.85	9.6	6.5-9	su

Table 2.2Rio Grande Segment 2304 Station 13205Historical Water Chemistry Detections

PARAMETER	Historical Average	Historical Minimum	Historical Maximum	TSWQS* Aquatic Life- Chronic/Hum an Health	UNITS
Pheophytin-A µg/L spectrophotometric acid. Meth.	2.2	ND	12.6		µg/L
Phosphorus, Dissolved Orthophosphorus (mg/L as P)	0.1	ND	0.2		mg/L
Phosphorus, Total, Wet Method (mg/L as P)	1.2	ND	10.4		mg/L
Residue, Total Nonfiltrable (mg/L)	30.8	ND	133.0		mg/L
Residue, Volatile Nonfiltrable (mg/L)	4.5	ND	16.0		mg/L
Selenium, Dissolved (µg/L as SE)	0.5	ND	3.2		µg/L
Selenium, Total (μg/L as SE)	0.3	ND	1.45	5/50	µg/L
Specific Conductance, Field (UMHOS/CM @ 25C)	1049.7	784.0	1359.0		umhos
Sulfate (mg/L as SO4)	193.9	21.5	291.0	300	mg/L
Temperature, Water (Degrees Centigrade)	21.1	11.5	29.5		deg. C
Zinc, Dissolved (µg/L as ZN)	0.7	ND	8.0	72.4/NA	µg/L

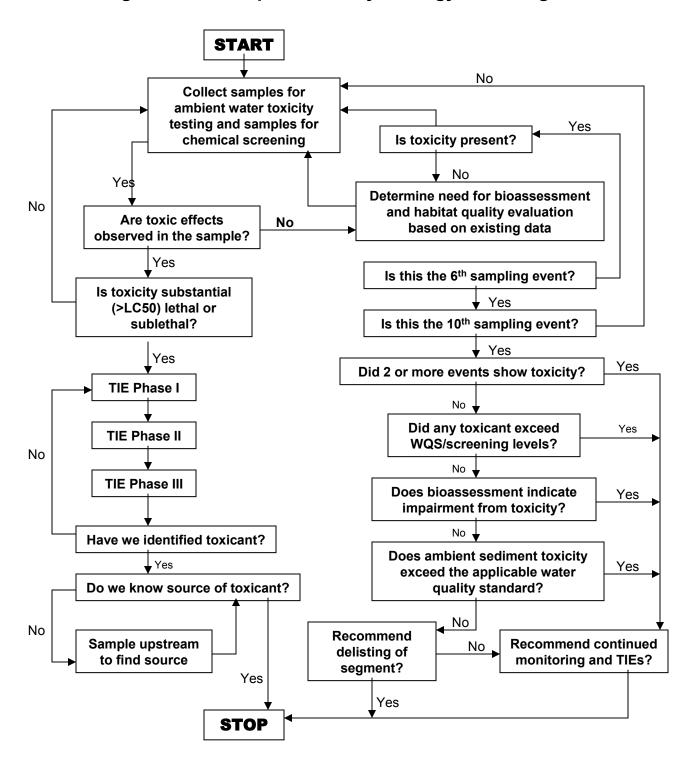
Notes: Period of Record - January 1995 through March 2001

J- result is between the MDL and Quantitation limit

mg/L= milligrams per liter

ug/L = microgram per liter

*Texas Surface Water Quality Standards (8/17/2000) for Aquatic Life (Chronic)


and Human Health

Total; * Average of 4 detections

SECTION 3 ASSESSMENT STRATEGY AND OBJECTIVES

The objective of this Toxicity Assessment Study is one part of the larger objective of establishing fully supported designated uses for the waterbody. The assessment seeks to determine the presence and causes or absence of ambient water toxicity. Figure 3.1 provides a conceptual toxicity strategy flow diagram for this Toxicity Assessment Study.

Figure 3.1 Conceptual Toxicity Strategy Flow Diagram

SECTION 4 ASSESSMENT METHODS

4.1 STUDY DESIGN

The general approach used in this assessment is a two-step investigative process. The first step involves determining if impairment of the designated uses continues. Delisting of the waterbody from the §303(d) list would be pursued if monitoring results demonstrate the waterbody is no longer impaired. Second, if toxicity is found to be present, a Toxicity Identification Evaluation (TIE) will be performed to identify the toxicant or toxicants causing the impairment. Based on results of the TIE, attempts will be made to identify the source(s) of the toxicity.

4.2 SAMPLING METHOD

Field measurements and water samples were collected from Stations 13205, 13208, and 13560 in Segment 2304 of the Rio Grande during nine sampling events beginning in April 2001 and ending in April 2002. Table 4-1 identifies stations that were sampled, sampling frequencies, toxicity tests conducted, and chemical parameters analyzed.

Field staff of Parsons followed field sampling procedures for field and conventional chemical parameters documented in the TCEQ *Surface Water Quality Monitoring Procedures Manual* (TCEQ 1999a) and the TCEQ *Receiving Water Assessment Procedures Manual* (TCEQ 1999b). For trace element sampling, additional sampling guidance is provided in USEPA Method 1669: *Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels* (USEPA 1996). Additional procedures for field sampling outlined in this section reflect specific requirements for sampling under this Toxicity Assessment Study and/or provide additional clarification.

4.2.1 General Water Chemistry

Four general water chemistry parameters were routinely analyzed during sample collections. Temperature, pH, dissolved oxygen, and specific conductivity were measured with a YSI 600 XL Multi-Parameter Probe. These parameters were measured when samples were collected from a sample location.

4.2.2 Trace Metals

Ultra-clean sampling and analysis methods were used to gather and analyze trace metals for this study. The procedures included clean sampling techniques, use of clean protocols in the laboratory, and use of low level analytical methods.

Historically, trace metals results have been plagued with contamination problems throughout the sampling and analysis process. Therefore, it is imperative that extreme care be taken to avoid contamination when collecting and analyzing ambient water samples for trace metals.

Table 4.1 Summary of Water and Sediment Sampling Events in the Rio Grande River below Amistad Reservoir, Segment 2304

		oril 25, 2 Stations			ay 23, 2 Stations			une 7, 20 Stations			ne 19, 2 Stations			ly 17, 20 Stations			gust 7, 2 Stations			uary 15 Station	s		ruary 25 Station	s		pril 23, 2 Stations		Total
ANALYSES	13205	13208	13560	13205	13208	13560	13205	13208	13560	13205	13208	13560	13205	13208	13560	13205	13208	13560	13205	13208	1356	0 13205	13208	13560) 13205	13208	13560	
WATER TOXICITY EVALUATION																												
Chronic toxicity bioassays																												
C. dubia	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	27
P. promelas	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1										18
Conventional parameters																												
BOD, COD, TSS, TDS, O&G, NO3, NH3, TKN, TP			1												1									1				3
Total or dissolved metals																												
As, Cd, Cr, Cu, Pb, Hg,Ni, Se, Ag, Zn			1												1									1				3
VOCs																												
Includes priority pollutant list			1												1									1				3
SVOCs																												
Includes priority pollutant list			1												1									1				3
PCBs			1												1									1				3
Polycyclic aromatic hydrocarbons																												
Total PAHs analysis (includes priority pollutant list)			1												1									1				3
Field-measured parameters																												
Temperature, DO, pH, conductivity	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	27

Ultra-low level trace metals analyses (< 10 μ g/L range) are difficult to undertake, since one of the major problems with these analyses is contamination introduced in either the sampling, handling, or analytical steps. In order to minimize the potential contamination and assure accurate representation of the source being tested, clean sampling techniques must be employed. For the purposes of this study, the sampling, handling, and analytical steps incorporate the primary precautions described in the EPA Method 1669 protocol for *Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels* (EPA, 1995). The methods are described below.

USEPA Method 1669 Summary

The following requirements of this method summarize the steps needed to obtain uncontaminated samples. These methods were employed to the greatest extent practicable.

- The laboratory provided sampling equipment and sample containers that were cleaned in a laboratory or cleaning facility using detergent, mineral acids, and reagent water as necessary to obtaining metals-free sample containers and equipment.
- Clean sample containers were individually double-bagged prior to shipment to the sampling site.
- The laboratory provided a clean container of reagent water for use with collecting field blanks. The container was shipped to Parsons personnel and handled as all other sampling equipment.
- "Clean hands" and "dirty hands" are designations given to the sampling team, the former contacting only the sample container, and the latter operating and contacting only the sampling equipment.
- All sampling equipment and sample containers used were non-metallic and free from any material that may contain metals.
- The sampling technician wore clean, non-talc gloves at all times when handling sample containers and collection tubing. Gloves were changed at least at each station?.
- Whenever possible, samples were collected facing upstream (for surface waters) and upwind to minimize the possibility of introducing boat contamination into the sample.
- All samples were collected by manual grab sampling using a peristaltic pump and Teflon[®] inlet hoses. The Teflon hose was attached with zip ties to an 8-foot, high-density polyethylene (HDPE) pole to extract the sample as far as possible away from the boat. Sample filtration, for dissolved metals determinations, was accomplished using an in-line 0.45 μ m filter cartridge. Filtration was performed in the field in real time. Prior to sampling each station, the tubing and new filter combination was flushed with site-water. After sampling was completed, the tubing was purged and each end was sealed in a new plastic bag provided by the laboratory. Next the pump and most of the tubing not connected to the pole was double-bagged to prevent contamination between stations. The pre-cleaned sample bottles were not flushed

prior to receiving the field water sample. After collection, samples were placed on ice and transferred to the laboratory using standard chain of custody procedures.

- Ultra-pure acid preservation of the samples was performed in the laboratory.
- Sampling activities were documented using logsheets and field notebooks as needed to support quality control (QC) and quality assurance (QA) measures.

USEPA Method 1669 Contamination and Interference

In a typical sampling effort there are many sources of contamination that can invalidate the sampling data. Potential sources of trace quantities of metals include metallic or metalcontaining sampling equipment, containers, lab ware, reagents, deionized water, improperly cleaned equipment, thread and tool joint lubricants, engine exhaust, cigarette smoke, and even dirt and dust from nearby roads or bridges. Minimizing contamination requires procedures that primarily involve avoidance of the sources of contamination. The most important aspects in avoiding contamination are awareness of the potential sources and careful attention to performance of the sampling work. The keys used in this assessment study to abide by these two requirements were:

- Minimize exposure all sampling equipment and containers when not in immediate use were kept in a clean plastic bag to minimize the chance of atmospheric inputs.
- Wear gloves the sampling technicians wore clean non-talc gloves when handling samples, blanks, and sampling equipment. Wearing multiple layers of clean gloves allows the exterior pair to be quickly removed with minimal disruption to work flow, should they become contaminated.
- Use metal-free apparatus only containers and equipment of the following construction materials came into contact with the samples: fluoropolymers, polycarbonate, polyethylene, polypropylene, polysulfone, or ultrapure quartz. Glass, Pyrex, Kimax, polymethmethacrylate (Plexiglas), PVC, nylon, and Vycor containers are not recommended; however, regardless of the material, all containers and equipment were cleaned using procedures that assure metal-free surfaces before beginning sampling.
- Sampling containers and equipment were clean when received by the sampling technicians. If there is any indication that the cleanliness of the container(s) had been breached, sampling did not proceed with that container. The "dirty" container would have been either discarded or returned to the laboratory for cleaning.
- Serialization indelibly mark each piece of container. Logbooks were maintained to track the sample from the container through the sampling process to the laboratory. Chain-of-custody procedures can trace contamination to particular handling procedures or lab personnel.
- Samples containing obviously high concentrations of metals were not collected, handled, shipped, or analyzed at the same time as low level samples.

- Contamination by indirect contact do not allow equipment or containers to become contaminated indirectly, for example, by setting a clean container or sampling equipment on the floor or ground.
- Contamination by airborne particulate matter sampling activities were as far removed as possible from direct sources of particulate generation or emission, including areas of bare soil subject to wind erosion.

4.3 SAMPLING EVENTS

The following subsections provide a summary of samples collected for each specific trip.

4.3.1 Sampling on April 25, 2001

Parsons field crew arrived at Rio Grande Station 13208 at 0940 hours. The crew collected water sample 13208-1, recorded YSI sonde measurements, measured total residual chlorine, recorded global positioning system (GPS) coordinates, and performed habitat characterization.

The crew then went to Station 13560 and sonde readings were recorded, water was tested for total residual chlorine, a water sample was collected, and GPS coordinates were recorded. Additionally, a habitat characterization was completed.

The crew arrived at Station 13205 at 1440 hours. First, a habitat assessment was completed. Next GPS and sonde measurements were recorded. The water was tested for chlorine residual. At 1505, the water sample for toxicity was collected.

4.3.2 Sampling on May 23-25, 2001

Parsons field crew arrived at Rio Grande Station 13208 on May 23, 2001 at 0920. The first round of samples and measurements were collected. A sonde was used to collect temperature, conductivity, dissolved oxygen, and pH measurements. A duplicate sample was also collected from this station. The crew then went to Station 13560 where sonde readings were recorded and a water sample was collected.

The sonde stopped working properly, so sampling of the next station (13205) was delayed until May 25, 2001. The sonde could no be fixed in the field, so samples were collected, but field measurements were not collected.

4.3.3 Sampling on June 7, 2001

Parsons field crew arrived at Rio Grande Station 13208 on June 7, 2001 at 0725. The water sample and field and measurements were collected. A sonde was used to collect temperature, conductivity, dissolved oxygen, and pH measurements.

The crew proceeded to Station 13560 and arrived on site at 0845. Sonde readings were recorded and a water sample was collected.

The last station to be sampled (13205) was reached at 1254. The samples were collected and the sonde data was recorded.

4.3.4 Sampling on June 19 - 21, 2001

Parsons field crew arrived at Rio Grande Station 13208 on June 19, 2001 at 0917. The first round of samples and measurements were collected. A sonde was used to collect temperature, conductivity, dissolved oxygen, and pH measurements.

The crew proceeded to Station 13560 and arrived on site at 1022. Sonde readings were recorded and the water sample was collected.

The field crew experienced a flat tire twice; the final station (13205) was not reached until June 21, 2001, at 1010. The samples were collected and the sonde data was recorded.

4.3.5 Sampling on July 17 - 19, 2001

Parsons field crew arrived at Rio Grande Station 13208 on July 17, 2001 at 0840. At 0850 a water sample and duplicate sample were collected.

The crew proceeded to Station 13560 on Moody Ranch arriving at 0938. Sonde readings were recorded following sample collection at 0945. The samples were packaged and put on ice for delivery to the various laboratories via FedEx at 1230.

On July 19, 2001, the crew arrived at Station 13205 on the Rio Grande below Eagle Pass at 0903. Sonde readings were recorded followed by a sample collection at 0908. The samples were shipped to the laboratory from Eagle Pass via FedEx at 1000.

4.3.6 Sampling on August 7 - 9, 2001

Parsons field crew arrived at Station 13208 on the Rio Grande above the Del Rio International Bridge at 0920 on August 7, 2001. At 0930 a water sample was collected and sonde data recorded following sample collection.

At 1025 the field crew arrived at Station 13560 at Moody Ranch. The water sample was collected at 1030 followed by the sonde readings. The samples were shipped to the laboratory via FedEx from Del Rio at 1230.

On August 9, 2001, the field crew arrived at Station 13205. A water sample was collected at 0950. Sonde readings were recorded following sample collection. The samples were packaged and shipped to the laboratory by FedEx from Eagle Pass at 1035.

4.3.7 Sampling on January 15, 2002

The Parsons field crew arrived at Station 13208 on the Rio Grande above the Del Rio International Bridge at 0855 on January 15, 2002. At 0910, sonde data were recorded. A

water sample, 13208-7, was collected at 0920, and then the crew departed Station 13208 for Moody Ranch.

At 1006 the field crew arrived at Station 13560 at Moody Ranch and collected sonde readings at 1016. The water sample, 13560-7, was collected at 1030.

The field crew arrived at Station 13205 at 1425. Sonde water quality readings were recorded at 1435. A water sample, 13205-7, was collected at 1445, and segment duplicate sample was collected at 1455. The samples were packaged and shipped via FedEx from Eagle Pass at 1615.

4.3.8 Sampling on February 26, 2002

The Parsons field crew arrived at Station 13208 on the Rio Grande above the Del Rio International Bridge at 0840 on February 26, 2002. At 0850 sonde water quality data were recorded. Water samples for Station 13208-8 and the segment duplicate sample were collected for toxicity at 0905; for pesticide and organics at 0925; and metals at 0950, and then the crew departed Station 13208 for Moody Ranch.

At 1222 the field crew arrived at Station 13560 at Moody Ranch and collected sonde readings at 1235. The water sample, 13560-8, was collected for toxicity at 1250. The samples were packed on ice and shipped from Del Rio to the laboratory via FedEx at 1325.

The field crew arrived at Station 13205 at 1610. Sonde water quality readings were recorded at 1620. A water sample, 13205-7, was collected at 1630 for toxicity. The sample was packaged and shipped to the laboratory via FedEx from Eagle Pass at 1700.

4.3.9 Sampling on April 23, 2002

The Parsons field crew arrived at Station 13208 on the Rio Grande above the Del Rio International Bridge at 0855 on April 23, 2002 and collected water sample 13208-9 for toxicity. At 0920 sonde water quality readings were recorded. Water sample 2304 duplicate was collected at 0920, and the crew departed Station 13208 for Moody Ranch.

At 0955 the field crew arrived at Station 13560 at Moody Ranch and collected water sample, 13560-9. Sonde readings were recorded at 1010.

The field crew arrived at Station 13205 at 1315 and collected water toxicity sample, 13205-9. Sonde water quality readings were recorded at 1335. The samples were packaged and shipped to the laboratory via FedEx from Eagle Pass at 1635.

4.4 ANALYTICAL METHODS

Appendix F lists a combination of the analytical methods used for potential toxicant identification. The analyses listed in Appendix F are USEPA-approved methods as cited in TCEQ TMDL guidance document, Clean Rivers Program or Surface Water Quality Monitoring Program Guidance and in 40 Code of Federal Regulations, Section 136, Part B.

Exceptions to this include analyses and sample matrices for which no regulated methods exist, or where USEPA has not approved any method with adequate sensitivity for TMDL data requirements.

4.5 TOXICITY TESTING METHODS

The toxicity of ambient water was assessed using the *Ceriodaphnia dubia;* the *Pimephales promelas;* and the corresponding methods found in *Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Water to Freshwater Organisms. Third Edition, EPA-600-4-91-002, July 1994.*

In addition, Technical Memorandum No. 1, prepared by Parsons as part of this study, provides information on various statistical components for determining significant differences in order to designate a test failure. It also recommends various criteria for lethal and sublethal effects. The memorandum is provided in Appendix F

4.6 QUALITY CONTROL REQUIREMENTS

Refer to the Assessment of the Presence and Causes of Ambient Toxicity Quality Assurance Project Plan (QAPP), Revision 4, FY2002-03.

4.6.1 Sampling Quality Control Requirements and Acceptability Criteria

The minimum field QC requirements followed by Parsons were outlined in the TCEQ *Surface Water Quality Monitoring Procedures Manual* and in Section B5 of the project Quality Assurance Project Plan (QAPP). Sampling QC involved use of bottle and equipment blanks, trip blanks, field duplicates, and field blanks.

4.6.2 Laboratory Measurement QC Requirements and Acceptability Criteria

These requirements and criteria were applicable to all laboratories used for analysis of various required parameters. Detailed laboratory QC requirements were contained within each individual method and laboratory quality assurance manual. As described in Section B5 of the project QAPP, the minimum requirements followed by analytical laboratories included: 1) laboratory duplicates (LD); 2) laboratory control standards (LCS); 3) matrix spikes (MS) and matrix spike duplicates (MSD); 4) method blanks; and 5) additional QC samples such as surrogates, internal standards, continuing calibration samples, and interference check samples. Laboratory QC sample results were reported with the data report (see Section C2 of the project QAPP).

4.6.3 Failures in QC Requirements

As described in Section B5 of the project QAPP, sampling QC excursions were evaluated by the Parsons Project Manager in consultation with the Parsons quality assurance officer. Differences in field duplicate sample results were used to assess the entire sampling process, including environmental variability. The arbitrary rejection of results based on predetermined limits was not practical, therefore, the professional judgment of the Parsons Project Manager and quality assurance officer was relied upon when evaluating results. Rejecting sample results based on wide variability was a possibility. Corrective action involved identification of the cause of the failure where possible. Response actions may have included re-analysis of questionable samples. In some cases, a station may have had to be re-sampled to achieve project goals. The disposition of such failures and conveyance to the TCEQ are discussed in Section B4 of the project QAPP under Failures or Deviations in Analytical Methods Requirements and Corrective Actions.

Refer to Appendix D for the summarization of QA/QC findings, data acceptability and qualifiers to deviations.

4.7 DATA MANAGEMENT

Data Management protocols are addressed in the Data Management Plan which is Appendix E of the QAPP.

4.8 STREAM HABITAT CHARACTERIZATION

Stream habitat characterization utilizing TCEQ procedures was performed during the August sampling event by completing copies of the TCEQ's receiving water assessment forms (Stream Physical Characteristics Worksheets) for each station. The detailed Habitat forms are located in Appendix F.

4.9 FLOW RATE MONITORING

The International Boundary and Water Commission (IBWC) monitors the flow rate in the Rio Grande. The following are USGS gauge station flow rates in cubic feet per second (cfs) on each date of sampling. The flow rates were acquired by instantaneous flow measurements. USGS Station 8458000 is at Eagle Pass near TCEQ Station 13205. USGS Station 8451800 and TCEQ Station 13208 are near Del Rio and approximately 4.5 miles upstream of TCEQ Station 13560. USGS Station 8450900 is below the Amistad Reservoir Dam and approximately 12 miles upstream of TCEQ Station 13208.

Date	USGS 8458000	USGS 8451800	USGS 8450900
	(cfs)	(cfs)	(cfs)
January 28, 2001	1,014	777	749
April 25, 2001	2,564	3,030	2,638
April 29, 2001	2,998	2,723	2,659
May 23, 2001	2,352	2,341	2,610
June 7, 2001	2,158	1,554	1,628
June 19, 2001	2,147	2,539	2,514
June 21, 2001	2,119	2,493	2,500
July 17, 2001	1,476	1,497	1,603
July 19, 2001	1,338	1,529	1,564
August 7, 2001	5,191	4,908	5,050
August 9, 2001	5,156	4,979	5,085
November 29, 2001	777	823	682
January 14, 2002	720	766	657
February 26, 2002	586	777	657
April 23, 2002	2,398	2,041	2,069

USGS Gauge Station Flow Rates for the Rio Grande Segment 2304

The 7Q2 river flow rate at USGS Station 8458000 (TCEQ Station 13205) at Eagle Pass is 821.8 cfs; the Harmonic Mean flow rate is 1,570.0 cfs. The flow rates on January 14 and February 26, 2002 were below the 7Q2, which invalidates the toxicity data from Station 13205 on those dates. In addition to those three dates, the flow rates on January 28 and July 17 and 19, 2001 were below the Harmonic Mean flow rate which suspends the evaluation of the TSWQS human health criteria.

The 7Q2 river flow rate at USGS Station 8451800 near Del Rio (TCEQ Station 13208) is 674.9 cfs; the Harmonic Mean flow rate is 1,256.4 cfs. The river flow rates for January 28 and November 29, 2001 and January 14 and February 26, 2002 were below the Harmonic Mean flow rates and suspends the human health criteria for Stations 13208 and 13560.

SECTION 5 AMBIENT WATER RESULTS

Water samples for toxicity tests were collected at Stations 13205, 13208, and 13560 on April 25, May 23, June 7, June 19, July 17, August 7, 2001; January 15, February 26, and April 23, 2002. In addition, water samples for complete priority pollutant chemical analysis were collected on April 25, 2001, July17, 2001, and February 26, 2002.

5.1 FIELD MEASUREMENTS

All field measurements were within expected ranges during these sampling results. Field measurements were not collected on May 25, 2001 at Station 13205 because the data sonde malfunctioned. Table 5.1 presents the results of these events. Although the instantaneous dissolved oxygen measurements taken at Station 13208 on July 17, 2001 (4.51 mg/L) and Station 13560 on April 23, 2002 were below the 5.0 mg/L dissolved oxygen TSWQS mean limit, the minimum dissolved oxygen standard for High Aquatic Life Uses is 3.0 mg/L. Therefore, the standard was not exceeded, but the measurements may warrant 24 hour dissolved oxygen testing in the future. Residual chlorine measurement was discontinued after initial readings measured <0.1 mg/L for all sites.

5.2 AMBIENT WATER TOXICITY RESULTS

Table 5.2 contains results of the 12 sampling events for water toxicity for *C. dubia* and the Fathead minnow. Nine sampling events were performed by Parsons. Two sampling events were performed by the TCEQ and one sampling event was performed by the EPA. Table 5.2 contains both lethal and sublethal responses of the test organisms at each station. Results presented in shaded cells indicate a significant difference from the control samples. There was only one sample collected by Parsons on April 25, 2001 that produced a statistically identifiable toxic effect. The statistical difference was evident using both an alpha of 0.05 and 0.01. The EPA Region 6 laboratory performs the toxicity tests on samples collected by the TCEQ. EPA uses an alpha equal to 0.05 in their statistical analysis. See Appendix F for a discussion of EPA's proposed allowance for using an alpha equal to 0.01 for permitted discharge reporting.

Toxicity testing results from both lethal and sublethal responses of the fathead minnow did not show any significant differences in any of the tests at any of these stations. Because of this, testing with the fathead minnow was discontinued after the Parsons August 2001 sampling event.

The *C. dubia* did not show any significant lethality in the samples collected with one exception. The duplicate sample at Station 13208, collected on June 19 had 100 percent mortality on day 4 of the tests. The 100 percent mortality occurred all at once (overnight). The corresponding test sample produced 0 percent mortality. Therefore, the cause of sudden mortality is not known, but is believed to be a testing problem and not toxicity caused by the water sample. No other *C. dubia* sample had less than 90 percent survival.

Table 5.1Water Quality Field Measurements for Rio Grande Segement 2304

	Water Quality Measurements Rio Grande, Segment 2304										
	Station 13205										
Date M/D/Y	Temp °C	DO Conc mg/L	рН	Cond uS/cm	TRC mg/l						
4/25/2001	21.92	10.42	8.39	990	< 0.1						
5/25/2001	NM	NM	NM	NM	NM						
6/7/2001	28.19	8.45	8.09	1079	NM						
6/21/2001	26.1	7.57	8.23	1046	NM						
7/19/2001	28.7	6.26	7.9	930	NM						
8/9/2001	26.68	7.16	7.89	1034	NM						
1/15/2002	13.23	7.11	8.7	916	NM						
2/25/2002	13.21	EM	8.38	1009	NM						
4/23/2002	24.88	6.40*	NM	938	NM						

		iter Quality Mea io Grande, Segr			
		Station 132	208		
Date M/D/Y	Temp °C	DO Conc mg/L	рН	Cond uS/cm	TRC mg/l
4/25/2001	14.99	8.25	8.09	994	< 0.1
5/23/2001	17.21	6.5*	8.18	1081	NM
6/7/2001	19.75	5.50	7.6	1080	NM
6/19/2001	20.24	5.84	8.03	1091	NM
7/17/2001	23.08	4.51	7.51	942	NM
8/7/2001	24.26	5.64	7.62	1019	NM
1/15/2002	11.74	5.94	8.84	1041	NM
2/25/2002	13.18	EM	8.38	1013	NM
4/23/2002	16.24	5.10*	NM	985	NM

Water Quality Measurements Rio Grande, Segment 2304									
		Station 135	560						
Date M/D/Y	Temp °C	DO Conc mg/L	рН	Cond uS/cm	TRC mg/l				
4/25/2001	16.39	11.83	8.37	945	< 0.1				
5/23/2001	18.22	7.2*	8.17	1035	NM				
6/7/2001	20.3	6.55	7.48	1034	NM				
6/19/2001	20.94	7.26	7.69	1051	NM				
7/17/2001	23.27	7.17	7.68	913	NM				
8/7/2001	24.55	6.5	7.77	1010	NM				
1/15/2002	12	5.83	8.43	992	NM				
2/25/2002	13.14	EM	8.32	1018	NM				
4/23/2002	16.94	4.80*	NM	947	NM				

mg/L - milligrams per liter

mS/cm - milli Siemens per centimeter

DO Conc - Dissolved oxygen concentration

TRC - total residual chlorine

Cond - Conductivity pH is in standard units ft - feet NM - No measurement °C - degrees Celcius

* - Measurements corrected from % Saturation

EM = equipment malfunction

Table 5.2Rio Grande Below Amistad 23047 day Water Survival and Growth Results Summary

		% Su	irvival	Sub-Let	hal Effect
Die Owende 0004				Growth	# Neonates
Rio Grande 2304		Pimephales	Ceriodaphnia	Pimephales	Ceriodaphnia
		Promelas	dubia	Promelas	dubia
	Control	97	97		17.7
January 28, 2001 (TCEQ Collected)	13196	93	93		18.9
-	15817	100	100		20.8
	Control	95	100	0.315	27.9
	13205	98	100	0.333	22.6
April 25, 2001	13208	100	90	0.450	15.7
	13560	98	100	0.410	30.3
	13208-Dup	98	100	0.415	23.7
	Control	100	100		17.7
April 29, 2001 (TCEQ Collected)	13196*	97	100		11.3
	15817*	97	100		14.6
	Control	100	100	0.625	28.2
	13205	85	100	0.828	30.6
May 23-May 25, 2001	13208	95	90	0.675	24.8
	13560	100	100	0.775	28.2
	13208-Dup	88	100	0.768	25.4
	Control	100	100	0.650	22.9
	13205	83	90	0.565	24.9
June 7, 2001	13208	95	90	0.508	26.5
	13560	95	100	0.560	23.6
	13205-Dup	90	100	0.485	25.0
	Control	100	100/100	0.475	31.7/28.6
	13205	75	90	0.568	30.5
June 19 & 21, 2001	13208	95	90	0.468	26
	13560	95	100	0.53	31.8
	13208-Dup	100	LE	0.475	LE
	Control	98	90	0.385	22.9
	13205	77	90	0.375	25.9
July 17-July 19, 2001	13208	100	100	0.25	25.1
	13560	95	100	0.348	25.9
	13208-Dup	98	100	0.385	28.6
	Control	95	90	0.445	30.2
	13205	75	100	0.3905	29.6
August 07 & 09, 2001	13208	90	100	0.4188	31.1
	13560	95	100	0.3445	33.8
	Control	100	100		
November 29, 2001 ** (TCEQ	13196*	97.5	100		
Collected)	15817*	100	100		
	Control		100		27.8
	13205*		<7Q2		<7Q2
January 14, 2002	13208		100		24.3
- 1	13560		100		28.3
	13205-Dup		100		28.9
	Control		100		22.3
	13205*		<7Q2		<7Q2
Februaury 26, 2002	13208		100		28.5
	13560		100		25.2
	Control		90		23.2
	13205		100		25.1
April 23, 2002	13208		100		28.7
	13560		100		29.9
	13208-Dup		100		25

* Flow in river less than 7Q2, toxicity standard does not apply.

Shaded cell denotes statistically significant difference from the control

Empty cell = no test performed; Pimephales Promelas toxicity testing was discontinued after no significant toxicity could be detected

*Stations 13196 and 15817 are at and below Laredo, respectively, and not within this study area

** These were 4-day acute tests performed by EPA

LE = Laboratory error.

One *C. dubia* test indicated sublethal effects for water collected on April 25, 2001, at Station 13208. The number of neonates produced was 15.7 per female versus a control of 27.9. The TCEQ collected water samples at Stations 13196 and 15817, which are both located below Laredo and are not within this study area. Nevertheless, water samples collected from Stations 13196 and 15817 by the TCEQ on April 29, 2001 were found to be sublethally toxic to *C. dubia*.

5.3 CHEMICAL ANALYSIS RESULTS

Table 5.3 presents only detected concentrations of parameters found in samples taken from Station 13560 for each of the three chemical sampling events. It should be noted that the TSWQS limit free cyanide to 10.7 μ g/L (aquatic life uses) as measured by EPA Method 335.1 (cyanide amenable to chlorination). Free cyanide is a subset of total cyanide (EPA Method 335.2). The one total cyanide detection of 11.1 μ g/L, probably did not contain enough free cyanide to cause an exceedance of the TSWQS.

Table 5.3 Chemical Analysis Detections Rio Grande Segment 2304

		Station I	D 13560	Station 13208		
lons	PARAMETER Chloride Sulfate	5/23/01 RESULT 130 204	7/17/01 RESULT 118 176	2/26/02 RESULT 126 174	TSWQS* Aquatic Life- Chronic/Human Health 200 300	UNITS mg/L mg/L
Inorganics	Dicofol Hardness Cyanide (total)	0.15 J 272 11.1	0.03 J 270 ND	ND NA ND	19.8/0.215 10.7/200	μg/L mg/L μg/L
Total Metals	Mercury Selenium	0.00104 ND	0.00085 0.533	0.000796 0.563	1.3/0.0122 5/50	μg/L μg/L
Dissolved	Arsenic	1.56	1.93	0.95	190/50**	μg/L
Trace Metals	Copper (T) Chromium (T) Nickel (T) Lead (T) Zinc (T)	0.87 ND ND ND 0.93	1.46 J ND 0.91 ND 1.18	1.4 1.03 ND 0.4 2.75	28.89/NA 10.6/100 366.5/NA 9.01/4.98 244/NA	μg/L μg/L μg/L μg/L μg/L
Dissolved Major lons	Calcium Potassium Magnesium Sodium	71.6 4.51 16.8 104	77.9 4.45 20.1 106	69.4 3.75 20.4 96		mg/L mg/L mg/L mg/L

Notes:

J- result is estimated

NA - Not Analyzed

ND- result was Not Detected

mg/L= milligrams per liter

ug/L = microgram per liter

*Texas Surface Water Quality Standards (8/17/2000) for Aquatic Life (Chronic) and Human Health

** All metals TSWQS based on a hardness of 272 mg/L

SECTION 6 TOXICITY IDENTIFICATION EVALUATION

No toxicity identification evaluation was initiated since only 1 sublethal C. dubia growth and reproduction test was observed to be toxic in samples collected upstream of Laredo, Texas. Toxicity was not observed in 89 out of 90 toxicity tests performed for this assessment.

SECTION 7 SOURCE ANALYSIS AND IDENTIFICATION

No source identification was initiated due to lack of persistent toxicity.

SECTION 8 SUMMARY AND CONCLUSIONS

8.1 SUMMARY

Segment 2304 of the Rio Grande was identified on the State of Texas 1999 CWA §303(d) lists as "not supporting" aquatic life uses due to toxicity of ambient water downstream of Del Rio and only "partially supporting" aquatic life uses due to occasional toxicity in ambient water and sediment downstream of Eagle Pass and Laredo. In consideration of additional data obtained in 1998 and 1999, the TCEQ deleted the 1999 §303(d) list reference to partially supporting aquatic life uses due sediment toxicity downstream of Eagle Pass and water and sediment toxicity downstream of Laredo. The draft 2000 §303(d) list retained the "not supporting" aquatic life uses due to ambient water toxicity downstream of Del Rio and Eagle Pass.

Parsons conducted nine sampling events on three stations (13205, 13208, and 13560) in the upper two-thirds of Segment 2304 of the Rio Grande. No significant lethality effects were observed to either the *C. dubia* or the fathead minnow for this sampling. Sublethal effects were observed only once on *C. dubia* at Station 13208 in April 2001. No other significant sublethal effects were observed with either species on the other samples.

Although not part of this study, the TCEQ collected three routine samples each from Stations 13196 and 15817 during this study and under a separate QAPP, but both stations are below Laredo in the lower third of the segment. Sublethal effects were observed in samples collected at Stations 13196 and 15817 on one occasion, April 29, 2001.

8.2 CONCLUSION

This project focused on the upper two-thirds of Segment 2304 that was not supporting aquatic life uses due to water toxicity. The data in this report indicates aquatic life uses in the upper two-thirds of Segment 2304 are fully supported with regard to ambient water toxicity.

Table 8.1 is a summary of toxicity testing results for samples collected over the last 5 years. The data presented in Table 8.1 were extracted from Table 2.1 (Historical Water Toxicity Results from July 28, 1997) and Table 5.2 (7-Day Water Survival and Growth Results ending April 23, 2002). Table 8.1 indicates no significant difference in the last 40 chronic lethality tests or the last 18 sublethal effect tests using the fathead minnow. Therefore, the ambient water quality in Segment 2306 is not toxic to sensitive vertebrate species.

Station	Let	nality	Subl	ethal	Total
	Fathead	C. dubia	Fathead	C. dubia	
13205*	0/13	0/14	0/6	1/14	1/47
13208	0/6	0/9	0/6	1/9	1/30
13560*	0/11	0/14	0/6	3/15	3/46
13196	0/5	0/5	0/0	1/4	1/14
15817	0/5	0/5	0/0	1/4	1/14
Total	0/40	0/47	0/18	7/46	7/151
Percent	0%	0%	0%	15%	5%

Table 8.1Number of Chronic Toxicity Text Failures / Total Number of TestsApril 22, 1997 – April 23, 2002

* Test result using ambient water collected on January 14 and February 26, 2002 at Station 13205 and October 27, 1998 are not included in Table 8.1 because the river flow was below the applicable 7Q2 flow rates (See §§ 4.9, p. 4-11).

The table also documents no toxicity in the last 47 chronic lethality tests using the *C. dubia*. Sublethal effects to *C. dubia* were observed in 7 of the last 46 (15%) ambient water samples. According to currently adopted assessment methodology, the 15 percent sublethal effects justify pursuing a TIE/TRE and developing a TMDL. However, practically, a TIE/TRE and TMDL are not appropriate in this situation. Four out of the 5 sampling stations had only one sample in the last five years exhibiting unacceptable sublethal effects. The 3 sublethal effects for Station 13560 occurred over a 2-year, 10-month period. Table 8.2 provides the dates these samples were collected.

Stations	Last Sublethal Sample Collection Date	Prior Sublethal Effects Sample Collection Date
13205	September 22, 1997	February 1993
13208	April 25, 2001	February 1993
13560	July 25, 2000 March 3, 1998 September 23, 1997	March 3, 1998 September 23, 1997 June 5, 1995
13196	April 29, 2001	October 21, 1992
15817	April 29, 2001	*

Table 8.2Sublethal Effects Sample Collection Dates

* The April 29, 2001 sample is the only sample exhibiting sublethal effects out of 6 samples collected since June 6, 1995.

Table 8.2 documents the lack of persistent sublethal effects at a single station or season. Also, samples collected exhibiting sublethal effects were from stations separated by many miles in this 226-mile segment. Therefore, conducting a TIE is not feasible at this time, due to random. Inconsistent and small effects related to sublethal responses to Ceriodaphnia dubia in this segment. If additional toxic samples could be collected in a reasonable amount of time, performing a TIE would most likely identify different causes, if the causes could be identified at all. Performing a TIE/TRE would be impossible with inconsistent toxicity. The source could be from point or non-point source or from Mexico. Developing a TMDL may be impractical if the evidence is only inconsistent sublethal effects that cannot be positively linked to a source in Texas. Enforcing broad regulatory non-point source controls based on the evidence provided in this report may be met by legal challenges from landowners. Parsons does not recommend including this segment in Category 5 (303(d) List) if inclusion requires a TIE/TRE and TMDL. Parsons recommends revising the adopted assessment policy to require persistent sublethal effects, such as greater than 50 percent sublethal effects if lethal effects occur less than 10 percent of the time, before labeling a segment as not meeting aquatic life using due to toxicity. Parsons recommends continued toxicity testing within this segment to monitor any changes in toxicity.

SECTION 9 REFERENCES

- TCEQ 1999a. Surface Water Quality Monitoring Procedures Manual.
- TCEQ 1999b. Program Guidance & Reference Guide FY 2000-2001, Texas Clean Rivers Program.
- USEPA 1999. Method 1631: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry, Rev. B. U.S. Environmental Protection Agency, Office of Water, Engineering and Analysis Division (4303), Washington, D.C. 20460.
- USEPA 1996. Method 1632: Inorganic Arsenic in Water by Hydride Generation Quartz Furnace Atomic Absorption. U.S. Environmental Protection Agency, Office of Water, Engineering and Analysis Division (4303), Washington, D.C. 20460.
- USEPA 1996. Method 1636: Determination of Hexavalent Chromium by Ion Chromatography. U.S. Environmental Protection Agency, Office of Water, Engineering and Analysis Division (4303), Washington, D.C. 20460.
- USEPA 1996. Method 1669: Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels. U.S. Environmental Protection Agency, Office of Water, Engineering and Analysis Division (4303), Washington, D.C. 20460.
- USEPA 1996. Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma - Mass Spectrometry, Revision 5.4. Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268.
- USEPA 1994. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 3rd Edition. EPA/600/4-91/002. U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Cincinnati, OH.
- USEPA 1993a. Methods for Aquatic Toxicity Identification Evaluations: Phase II, Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity. EPA/600/R-92/080. U.S. Environmental Protection Agency, Office of Research and Development, Duluth, MN.
- USEPA 1991a. *Methods for Aquatic Toxicity Identification Evaluations: Phase I, Toxicity Characterization Procedures*. EPA/600/6-91/003. U.S. Environmental Protection Agency, Office of Research and Development, Duluth, MN.
- USEPA 1991b. Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents, Phase I. EPA/600/6/6-91/005. Environmental Research Laboratory, Duluth, MN.

APPENDIX A HISTORICAL DATA

Long Description	Data
1,1,2,2-TETRACHLOROETHANE TOTWUG/L	Min of Value
	Max of Value
	Average of Value
	Count of Value
1,1,2-TRICHLOROETHANE TOTWUG/L	Min of Value
	Max of Value
	Average of Value
	Count of Value
1,1-DICHLOROETHANE TOTWUG/L	Min of Value
I, I-DIGITEOROETHANE TOTWOG/E	Max of Value
	Average of Value
	Count of Value
1,1-DICHLOROETHYLENE TOTWUG/L	Min of Value
	Max of Value
	Average of Value
	Count of Value
1,2-DICHLOROETHANE TOTWUG/L	Min of Value
	Max of Value
	Average of Value
	Count of Value
1,2-DICHLOROPROPANE TOTWUG/L	Min of Value
	Max of Value
	Average of Value
	Count of Value
2,4,5-T IN WHOLE WATER SAMPLE (UG/L)	Min of Value
	Max of Value
	Average of Value
	Count of Value
2,4-D IN WHOLE WATER SAMPLE (UG/L)	Min of Value
E, TO IN WINCLE WATEN OAWELL (UCIL)	Max of Value
	Average of Value
	Count of Value
2-CHLOROETHYL VINYL ETHER TOTWUG/L	Min of Value
	Max of Value
	Average of Value
	Count of Value
ACRYLONITRILE TOTWUG/L	Min of Value
	Max of Value
	Average of Value
	Count of Value
ALDRIN IN WHOLE WATER SAMPLE (UG/L)	Min of Value
ALDRIN IN WHOLE WATER SAWFEE (US/E)	Max of Value
	Average of Value
	Count of Value
ALKALINITY, TOTAL (MG/L AS CACO3)	Min of Value
	Max of Value
	Average of Value
	Count of Value
ALPHA BENZENE HEXACHLORIDE IN WHOLE WATER SAMPLE	Min of Value
	Max of Value
	Average of Value
	Count of Value
ALUMINUM, DISSOLVED (UG/L AS AL)	Min of Value
HEORINAURI, DIOOOLVED (UGIE AO AL)	
	Max of Value
	Average of Value
	Count of Value
ALUMINUM, TOTAL (UG/L AS AL)	Min of Value
	Max of Value
	Average of Value
	Count of Value
ARSENIC, DISSOLVED (UG/L AS AS)	Min of Value
	Max of Value
	Average of Value
	Count of Value
ARSENIC, TOTAL (UG/L AS AS)	Min of Value
	Max of Value
	Average of Value
	Count of Value
BENZENE IN WTR SMPLE GC-MS, HEXADECONE EXTR.UG/L	Min of Value
	Max of Value
	Average of Value
	Count of Value
	Min of Value
BETA BENZENE HEXACHLORIDE IN WHOLE WATER SAMP	
	Max of Value
	Average of Value
	Count of Value
	Min of Malina
BIOCHEMICAL OXYGEN DEMAND (MG/L, 5 DAY - 20DEG C	Min of Value
BIOCHEMICAL OXYGEN DEMAND (MG/L, 5 DAY - 20DEG C	Max of Value
BIOCHEMICAL OXYGEN DEMAND (MG/L, 5 DAY - 20DEG C	Max of Value
BIOCHEMICAL OXYGEN DEMAND (MG/L, 5 DAY - 20DEG C	

BROMOFORM, WHOLE WATER, UG/L	Max of Value Average of Value	
	Count of Value	
BROMOMETHANE WATER, WHOLE, RECOVERABLE, UG/L	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
CADMIUM, DISSOLVED (UG/L AS CD)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
CADMIUM, TOTAL (UG/L AS CD)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
CALCIUM, DISSOLVED (MG/L AS CA)	Min of Value	
	Max of Value	
	Average of Value	
CALCIUM, TOTAL (MG/L AS CA)	Count of Value Min of Value	
CALCIDINI, TOTAL (MIG/L AS CA)	Max of Value	
	Average of Value	
	Count of Value	
CARBON TETRACHLORIDE, WHOLE WATER, UG/L	Min of Value	+
S. A. S. S. TETRAOLEON DE, WHOLE WATEN, UG/L	Max of Value	
	Average of Value	
	Count of Value	
CARBON, TOTAL ORGANIC (MG/L AS C)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
CHLORDANE (TECH MIX & METABS),WHOLE WATER,UG/L	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
CHLORIDE (MG/L AS CL)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
CHLOROBENZENE TOTWUG/L	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
CHLOROETHANE TOTWUG/L	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
CHLOROFORM, WHOLE WATER, UG/L	Min of Value	
	Max of Value	
	Average of Value	
OUL OPOMETUANE WATER WILDLE RECOVERABLE LICH	Count of Value	
CHLOROMETHANE, WATER, WHOLE, RECOVERABLE, UG/L	Min of Value	
	Max of Value	
	Average of Value	
CHLOROPHYLL-A UG/L SPECTROPHOTOMETRIC ACID. METH	Count of Value	
UNLONGENTILL-A UG/L SPECTROPHOTOMETRIC ACID. METH	Min of Value	
	Max of Value	
	Average of Value Count of Value	
CHROMIUM, DISSOLVED (UG/L AS CR)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
CHROMIUM, TOTAL (UG/L AS CR)	Min of Value	
- , - , ,	Max of Value	
	Average of Value	
	Count of Value	
CIS-1,3-DICHLOROPROPENE TOTAL IN WATER UG/L	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
COPPER, DISSOLVED (UG/L AS CU)	Min of Value	Т
	Max of Value	
	Average of Value	
	Count of Value	
COPPER, TOTAL (UG/L AS CU)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
	Min of Value	
DDD IN WHOLE WATER SAMPLE (UG/L)	May of Value	
DDD IN WHOLE WATER SAMPLE (UG/L)	Max of Value	
DDD IN WHOLE WATER SAMPLE (UG/L)	Average of Value Count of Value	

DDE IN WHOLE WATER SAMPLE (UG/L)	Max of Value Average of Value Count of Value	
DDT IN WHOLE WATER SAMPLE (UG/L)	Min of Value	+
	Max of Value	
	Average of Value	
	Count of Value	
DELTA BENZENE HEXACHLORIDE TOTWUG/L	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
DIAZINON IN WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value Average of Value	
	Count of Value	
DIBROMOCHLOROMETHANE, WHOLE WATER, UG/L	Min of Value	_
,,, ,,	Max of Value	
	Average of Value	
	Count of Value	
DICOFOL IN WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
DIELDRIN IN WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
DURSBAN(CHLOROPYRIFOS)WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value Count of Value	
ENDOSULFAN IN WHOLE WATER SAMPLE (UG/L)	Min of Value	+
LIDOGOLI AN IN WHOLL WATER SAWFLE (UG/L)	Max of Value	
	Average of Value	
	Count of Value	
ENDOSULFAN SULFATE TOTWUG/L	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
ENDRIN IN WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
ETHYLBENZENE TOTWUG/L	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	-
GUTHION IN WHOLE WATER SAMPLE (UG/L)	Min of Value Max of Value	
	Average of Value Count of Value	
	Min of Value	
HARDNESS DISSOLVED CALCULATED (MG/LAS CaCO3)	Max of Value	
HARDNESS, DISSOLVED, CALCULATED (MG/L AS CaCO3)	Average of Value	2
HARDNESS, DISSOLVED, CALCULATED (MG/L AS CaCO3)		1
HARDNESS, DISSOLVED, CALCULATED (MG/L AS CaCO3)		
HARDNESS, DISSOLVED, CALCULATED (MG/L AS CaCO3)	Count of Value Min of Value	
	Count of Value	
	Count of Value Min of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value	
	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Max of Value Average of Value Average of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L) HEPTACHLOR IN WHOLE WATER SAMPLE (UG/L) HEXACHLOROBENZENE IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Max of Value Average of Value Average of Value Count of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Min of Value Min of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L) HEPTACHLOR IN WHOLE WATER SAMPLE (UG/L) HEXACHLOROBENZENE IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Count of Value Min of Value Min of Value Max of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L) HEPTACHLOR IN WHOLE WATER SAMPLE (UG/L) HEXACHLOROBENZENE IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Average of Value Min of Value Min of Value Max of Value Average of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L) HEPTACHLOR IN WHOLE WATER SAMPLE (UG/L) HEXACHLOROBENZENE IN WHOLE WATER SAMPLE (UG/L) HYDROCARBON IN WATER, FREON EXT, CHROMAT, IR MG/	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Min of Value Min of Value Max of Value Average of Value Count of Value Average of Value Count of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L) HEPTACHLOR IN WHOLE WATER SAMPLE (UG/L) HEXACHLOROBENZENE IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Average of Value Min of Value Min of Value Max of Value Average of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L) HEPTACHLOR IN WHOLE WATER SAMPLE (UG/L) HEXACHLOROBENZENE IN WHOLE WATER SAMPLE (UG/L) HYDROCARBON IN WATER, FREON EXT, CHROMAT, IR MG/	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Max of Value Average of Value Min of Value Min of Value Min of Value Min of Value Min of Value Min of Value Max of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L) HEPTACHLOR IN WHOLE WATER SAMPLE (UG/L) HEXACHLOROBENZENE IN WHOLE WATER SAMPLE (UG/L) HYDROCARBON IN WATER, FREON EXT, CHROMAT, IR MG/	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Max of Value Average of Value Count of Value Min of Value Min of Value Min of Value Min of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L) HEPTACHLOR IN WHOLE WATER SAMPLE (UG/L) HEXACHLOROBENZENE IN WHOLE WATER SAMPLE (UG/L) HYDROCARBON IN WATER, FREON EXT, CHROMAT, IR MG/	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Count of Value Min of Value Max of Value Max of Value Min of Value Max of Value Max of Value Max of Value Max of Value Average of Value Count of Value Min of Value Min of Value Min of Value Max of Value Max of Value Max of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L) HEPTACHLOR IN WHOLE WATER SAMPLE (UG/L) HEXACHLOROBENZENE IN WHOLE WATER SAMPLE (UG/L) HYDROCARBON IN WATER, FREON EXT, CHROMAT, IR MG/ LEAD, DISSOLVED (UG/L AS PB)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Min of Value Min of Value Min of Value Min of Value Max of Value Max of Value Min of Value Min of Value Average of Value Count of Value Min of Value Min of Value Min of Value Min of Value Min of Value Min of Value Max of Value Average of Value Count of Value Average of Value Count of Value Count of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L) HEPTACHLOR IN WHOLE WATER SAMPLE (UG/L) HEXACHLOROBENZENE IN WHOLE WATER SAMPLE (UG/L) HYDROCARBON IN WATER, FREON EXT, CHROMAT, IR MG/ LEAD, DISSOLVED (UG/L AS PB)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Min of Value Min of Value Max of Value Min of Value Min of Value Min of Value Min of Value Min of Value Min of Value Max of Value Max of Value Max of Value Max of Value Min of Value Min of Value Min of Value Min of Value Min of Value Min of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L) HEPTACHLOR IN WHOLE WATER SAMPLE (UG/L) HEXACHLOROBENZENE IN WHOLE WATER SAMPLE (UG/L) HYDROCARBON IN WATER, FREON EXT, CHROMAT, IR MG/ LEAD, DISSOLVED (UG/L AS PB)	Count of Value Min of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Max of Value Max of Value Max of Value Max of Value Average of Value Count of Value Min of Value Min of Value Max of Value Max of Value Max of Value Max of Value Average of Value Average of Value Count of Value Max of Value Max of Value Max of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L) HEPTACHLOR IN WHOLE WATER SAMPLE (UG/L) HEXACHLOROBENZENE IN WHOLE WATER SAMPLE (UG/L) HYDROCARBON IN WATER, FREON EXT, CHROMAT, IR MG/ LEAD, DISSOLVED (UG/L AS PB)	Count of Value Min of Value Average of Value Count of Value Max of Value Max of Value Max of Value Count of Value Min of Value Min of Value Min of Value Min of Value Max of Value Min of Value Min of Value Min of Value Min of Value Max of Value Max of Value Average of Value Count of Value Min of Value Max of Value Max of Value Min of Value Min of Value Min of Value Min of Value Min of Value Min of Value Max of Value Max of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L) HEPTACHLOR IN WHOLE WATER SAMPLE (UG/L) HEXACHLOROBENZENE IN WHOLE WATER SAMPLE (UG/L) HYDROCARBON IN WATER, FREON EXT, CHROMAT, IR MG/ LEAD, DISSOLVED (UG/L AS PB)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value	
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L) HEPTACHLOR IN WHOLE WATER SAMPLE (UG/L) HEXACHLOROBENZENE IN WHOLE WATER SAMPLE (UG/L) HYDROCARBON IN WATER, FREON EXT, CHROMAT, IR MG/ LEAD, DISSOLVED (UG/L AS PB)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Max of Value Min of Value	

MAGNESIUM, DISSOLVED (MG/L AS MG)	Max of Value Average of Value	
	Count of Value	
MAGNESIUM, TOTAL (MG/L AS MG)	Min of Value	
	Max of Value Average of Value	
	Count of Value	
MALATHION IN WHOLE WATER SAMPLE (UG/L)	Min of Value	-
	Max of Value	
	Average of Value	
	Count of Value	
METHOXYCHLOR IN WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value Min of Value	
METHTLENE CHLORIDE TOTWOG/L	Max of Value	
	Average of Value	
	Count of Value	
MIREX, TOTAL (UG/L)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
NICKEL, DISSOLVED (UG/L AS NI)	Min of Value	
	Max of Value	
	Average of Value	
NICKEL, TOTAL (UG/L AS NI)	Count of Value Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L AS N)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
NITROGEN, AMMONIA, TOTAL (MG/L AS N)	Min of Value	
	Max of Value	
	Average of Value	
NITROGEN, KJELDAHL, TOTAL, (MG/L AS N)	Count of Value Min of Value	
NITROGEN, RJELDATE, TOTAL, (MOLEASIN)	Max of Value	
	Average of Value	
	Count of Value	
NO2 PLUS NO3-N, TOTAL, WHATMAN GF/F FILT (MG/L)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
OXYGEN, DISSOLVED (MG/L)	Min of Value	
	Max of Value	
	Average of Value	
PARATHION IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value	
FARATHON IN WHOLE WATER SAMPLE (00/L)	Max of Value	
	Average of Value	
	Count of Value	
PCB - 1242 PCB SERIES WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
PCB-1016 TOTWUG/L	Min of Value	
	Max of Value	
	Average of Value	
PCB-1221 IN THE WHOLE WATER SAMPLE UG/L	Count of Value Min of Value	
FOD-1221 IN THE WHOLE WATER SAMPLE UG/L	Max of Value	
	Average of Value	
	Count of Value	
PCB-1232 PCB SERIES WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
PCB-1248 PCB SERIES WHOLE WATER SAMPLE UG/L	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
PCB-1254 PCB SERIES WHOLE WATER SAMPLE (UG/L)	Min of Value Max of Value	
	Average of Value	
	Count of Value	
PCB-1260 PCB SERIES WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value	

PCBS IN WHOLE WATER SAMPLE (UG/L)	Max of Value Average of Value	
	Count of Value	
PENTACHLOROBENZENE WHOLE WATER (UG/L)	Min of Value Max of Value	
	Average of Value	
	Count of Value	
PH (STANDARD UNITS)	Min of Value	6
	Max of Value	
	Average of Value	
	Count of Value	
PHEOPHYTIN-A UG/L SPECTROPHOTOMETRIC ACID. METH.	Min of Value	
	Max of Value	1
	Average of Value	
	Count of Value	
PHOSPHORUS, DISSOLVED ORTHOPHOSPHORUS(MG/L AS P)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)	Min of Value	
	Max of Value	1
	Average of Value	
	Count of Value	
PHOSPHORUS, IN TOTAL ORTHOPHOSPHATE (MG/L AS P)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
RESIDUE, TOTAL NONFILTRABLE (MG/L)	Min of Value	
	Max of Value	
	Average of Value	:
	Count of Value	
RESIDUE, VOLATILE NONFILTRABLE (MG/L)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
RESIDUE,TOTAL FILTRABLE (DRIED AT 180C) (MG/L)	Min of Value	
	Max of Value	
	Average of Value	66
	Count of Value	
SELENIUM, DISSOLVED (UG/L AS SE)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
SELENIUM, TOTAL (UG/L AS SE)	Min of Value	
	Max of Value	
	Average of Value	
SILVER, DISSOLVED (UG/L AS AG)	Count of Value Min of Value	
SIEVER, DISSOUVED (OGIE AS AG)	Max of Value	
	Average of Value	
	Count of Value	
SILVER, TOTAL (UG/L AS AG)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
SILVEX IN WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM @ 25C)	Min of Value	
	Max of Value	1
	Average of Value	104
	Count of Value	
SULFATE (MG/L AS SO4)	Min of Value	1
	Max of Value	
	Average of Value	19
	Count of Value	
TEMPERATURE, WATER (DEGREES CENTIGRADE)	Min of Value	
	Max of Value	2
	Average of Value	2
	Count of Value	
TETRACHLOROETHYLENE TOTWUG/L	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
TOLUENE IN WTR SMPLE GC-MS, HEXADECONE EXTR.UG/L	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
TOXAPHENE IN WHOLE WATER SAMPLE (UG/L)	Min of Value	
TOXAPHENE IN WHOLE WATER SAMPLE (UG/L)	Max of Value	
TOXAPHENE IN WHOLE WATER SAMPLE (UG/L)		

10005	TRANG & A DIGUL OR OF THENE TOTAL INVALUED HOU		
13205	TRANS-1,2-DICHLOROETHENE, TOTAL, IN WATER UG/L	Max of Value	0
		Average of Value	0.0
		Count of Value	2
	TRANS-1,3-DICHLOROPROPENETOTAL IN WATER UG/L	Min of Value	0
		Max of Value	0
		Average of Value	0.0
		Count of Value	2
	TRICHLOROETHYLENE-WHOLE WATER SAMPLE-UG/L	Min of Value	0
		Max of Value	0
		Average of Value	0.0
		Count of Value	2
	VINYL CHLORIDE-WHOLE WATER SAMPLE-UG/L	Min of Value	0
		Max of Value	0
		Average of Value	0.0
		Count of Value	2
	XYLENE WHL WATER SMPL (UG/L)	Min of Value	0
		Max of Value	0
		Average of Value	0.0
		Count of Value	2
	ZINC, DISSOLVED (UG/L AS ZN)	Min of Value	0
		Max of Value	8
		Average of Value	0.7
		Count of Value	23
	ZINC, TOTAL (UG/L AS ZN)	Min of Value	0
		Max of Value	0
		Average of Value	0.0
		Count of Value	1
13205 Min	of Value		0
13205 Max	c of Value		1359
13205 Ave	rage of Value		92.5
13205 Cou	int of Value		1306
Total Min o	of Value		0
Total Max	of Value		1359
Total Avera	age of Value		92.5
Total Cour	t of Value		1306

	Data
ALKALINITY, TOTAL (MG/L AS CACO3)	Min of Value
	Max of Value
	Average of Value
	Count of Value
BIOCHEMICAL OXYGEN DEMAND (MG/L, 5 DAY - 20DEG C	Min of Value
	Max of Value
	Average of Value
	Count of Value
	Min of Value
CARBON, TOTAL ORGANIC (MG/L AS C)	
	Max of Value
	Average of Value
	Count of Value
CHLORIDE (MG/L AS CL)	Min of Value
	Max of Value
	Average of Value
	Count of Value
CHLOROPHYLL-A UG/L SPECTROPHOTOMETRIC ACID. METH	Min of Value
	Max of Value
	Average of Value
	Count of Value
NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L AS N)	Min of Value
NITRITE FLUS NITRATE, TOTAL I DET. (MO/LAS N)	
	Max of Value
	Average of Value
	Count of Value
NITROGEN, AMMONIA, TOTAL (MG/L AS N)	Min of Value
	Max of Value
	Average of Value
	Count of Value
NITROGEN, KJELDAHL, TOTAL, (MG/L AS N)	Min of Value
,,,,,,,,,,,	Max of Value
	Average of Value
	Count of Value
	Min of Value
NO2 PLUS NO3-N, TOTAL, WHATMAN GF/F FILT (MG/L)	
	Max of Value
	Average of Value
	Count of Value
OXYGEN, DISSOLVED (MG/L)	Min of Value
	Max of Value
	Average of Value
	Count of Value
PH (STANDARD UNITS)	Min of Value
	Max of Value
	Average of Value
	-
PHEOPHYTIN-A UG/L SPECTROPHOTOMETRIC ACID. METH.	Count of Value
PREUPRITIN-A UG/L SPECTRUPRUTUMETRIC ACID. METR.	Min of Value
	Max of Value
	Average of Value
	Count of Value
PHOSPHORUS, DISSOLVED ORTHOPHOSPHORUS(MG/L AS P)	Min of Value
	Max of Value
	Average of Value
	Count of Value
PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)	Min of Value
······································	Max of Value
	Average of Value
	Count of Value
PHOSPHORUS, IN TOTAL ORTHOPHOSPHATE (MG/L AS P)	
	Min of Value
	Max of Value
	Average of Value
	Count of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L)	
	Count of Value
	Count of Value Min of Value
	Count of Value Min of Value Max of Value Average of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value
	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Count of Value Min of Value Max of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Min of Value Max of Value Average of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE,TOTAL FILTRABLE (DRIED AT 180C) (MG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Count of Value Min of Value Max of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Min of Value Max of Value Average of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE,TOTAL FILTRABLE (DRIED AT 180C) (MG/L)	Count of Value Min of Value Max of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Average of Value Count of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE,TOTAL FILTRABLE (DRIED AT 180C) (MG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Min of Value Min of Value Min of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE,TOTAL FILTRABLE (DRIED AT 180C) (MG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Min of Value Min of Value Max of Value Average of Value Count of Value Min of Value Min of Value Min of Value Max of Value Average of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE,TOTAL FILTRABLE (DRIED AT 180C) (MG/L) SPECIFIC CONDUCTANCE,FIELD (UMHOS/CM @ 25C)	Count of Value Min of Value Max of Value Count of Value Min of Value Max of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Max of Value Max of Value Max of Value Max of Value Average of Value Count of Value Count of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE,TOTAL FILTRABLE (DRIED AT 180C) (MG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value Min of Value Max of Value Max of Value Max of Value Min of Value Min of Value Average of Value Count of Value Min of Value Min of Value Min of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE,TOTAL FILTRABLE (DRIED AT 180C) (MG/L) SPECIFIC CONDUCTANCE,FIELD (UMHOS/CM @ 25C)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Min of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value Min of Value Min of Value Min of Value Min of Value Min of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE,TOTAL FILTRABLE (DRIED AT 180C) (MG/L) SPECIFIC CONDUCTANCE,FIELD (UMHOS/CM @ 25C)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Max of Value Max of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Min of Value Min of Value Min of Value Min of Value Min of Value Max of Value Max of Value Max of Value Max of Value
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE,TOTAL FILTRABLE (DRIED AT 180C) (MG/L) SPECIFIC CONDUCTANCE,FIELD (UMHOS/CM @ 25C)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Min of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value Min of Value Min of Value Min of Value Min of Value Min of Value

13208 TEMPERATURE, WATER (DEGREES CENTIGRADE)	Average of Value Count of Value	17.8 35
13208 Min of Value		0
13208 Max of Value		1380
13208 Average of Value		142.4
13208 Count of Value		567
Total Min of Value		0
Total Max of Value		1380
Total Average of Value		142.4
Total Count of Value		567

Long Description 1,1,2,2-TETRACHLOROETHANE TOTWUG/L	Data Min of Value	Total
1,1,2,2-TETRAUTLURUETTANE TUTWUG/L	Min of Value Max of Value	
	Max of Value Average of Value	0
	Count of Value	0
1,1,2-TRICHLOROETHANE TOTWUG/L	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	
1,1-DICHLOROETHANE TOTWUG/L	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	Ŭ
1,1-DICHLOROETHYLENE TOTWUG/L	Min of Value	-
	Max of Value	
	Average of Value	0
	Count of Value	Ű
1,2-DICHLOROETHANE TOTWUG/L	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	Ű
1,2-DICHLOROPROPANE TOTWUG/L	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	Ŭ
2,4,5-T IN WHOLE WATER SAMPLE (UG/L)	Min of Value	_
	Max of Value	
	Average of Value	0
	Count of Value	
2,4-D IN WHOLE WATER SAMPLE (UG/L)	Min of Value	
2,7-D IN WITCLE WATEN SAWFLE (UG/L)	Max of Value	
	Average of Value	
	Average of Value Count of Value	0
2-CHLOROETHYL VINYL ETHER TOTWUG/L	Min of Value	
2-CHLOROETHTE VINTLETHER TOTWOG/L		
	Max of Value	0
	Average of Value	0.
ACRYLONITRILE TOTWUG/L	Count of Value	
ACRYLONITRILE TOTWOG/L	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	_
ALDRIN IN WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	
ALKALINITY, TOTAL (MG/L AS CACO3)	Min of Value	11
	Max of Value	16
	Average of Value	133
	Count of Value	4
ALPHA BENZENE HEXACHLORIDE IN WHOLE WATER SAMPLE	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	
ALUMINUM, DISSOLVED (UG/L AS AL)	Min of Value	
	Max of Value	
	Average of Value	0.
	Count of Value	
ARSENIC, DISSOLVED (UG/L AS AS)	Min of Value	
	Max of Value	4.7
	Average of Value	2
	Count of Value	
BENZENE IN WTR SMPLE GC-MS, HEXADECONE EXTR.UG/L	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	_
BETA BENZENE HEXACHLORIDE IN WHOLE WATER SAMP	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	
BIOCHEMICAL OXYGEN DEMAND (MG/L, 5 DAY - 20DEG C	Min of Value	
	Max of Value	
	Average of Value	1.
	Count of Value	1
BROMOFORM, WHOLE WATER, UG/L	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	
BROMOMETHANE WATER, WHOLE, RECOVERABLE, UG/L	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	
CADMIUM, DISSOLVED (UG/L AS CD)	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	
CALCIUM, DISSOLVED (MG/L AS CA)		
CALCIUM, DISSOLVED (MG/L AS CA)	Count of Value	76. 87.

Appendix A Rio Grande Segment 2304 Station 13560 Water Pivot Table

CARBON TETRACHEORIDE WHOLE WATER INCOM	Piver Count of Value Min of Value	
CARBON TETRACHEORIDE, WHOLE WATER, UG/L	Max of Value	
	Average of Value	0
	Count of Value	0
CARBON, TOTAL ORGANIC (MG/L AS C)	Min of Value	
	Max of Value	4
	Average of Value	2
	Count of Value	
CHLORDANE (TECH MIX & METABS),WHOLE WATER,UG/L	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	Ŭ
CHLORIDE (MG/L AS CL)	Min of Value	64
	Max of Value	22
	Average of Value	133
	Count of Value	.00
CHLOROBENZENE TOTWUG/L	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	-
CHLOROETHANE TOTWUG/L	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	Ĭ
CHLOROFORM, WHOLE WATER, UG/L	Min of Value	
. ,	Max of Value	
	Average of Value	0
	Count of Value	Ĭ
CHLOROMETHANE, WATER, WHOLE, RECOVERABLE, UG/L	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	Ĭ
CHLOROPHYLL-A UG/L SPECTROPHOTOMETRIC ACID. METH	Min of Value	
	Max of Value	5.3
	Average of Value	0
	Count of Value	3
CHROMIUM, DISSOLVED (UG/L AS CR)	Min of Value	
- , (,	Max of Value	
	Average of Value	0
	Count of Value	
CHROMIUM, HEXAVALENT, DISSOLVED IN (UG/L AS CR)	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	
CIS-1,3-DICHLOROPROPENE TOTAL IN WATER UG/L	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	
COPPER, DISSOLVED (UG/L AS CU)	Count of Value Min of Value	
COPPER, DISSOLVED (UG/L AS CU)	Count of Value Min of Value Max of Value	
COPPER, DISSOLVED (UG/L AS CU)	Count of Value Min of Value Max of Value Average of Value	0
	Count of Value Min of Value Max of Value Average of Value Count of Value	0
COPPER, DISSOLVED (UG/L AS CU) DDD IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value	0
	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value	
	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value	
DDD IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value	
DDD IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value Count of Value Min of Value Max of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value	0
	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Max of Value Average of Value Average of Value Count of Value Min of Value Min of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Min of Value Min of Value Min of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value Min of Value Min of Value Max of Value Max of Value Max of Value Max of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Count of Value Count of Value Min of Value Max of Value Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Min of Value Min of Value Max of Value Max of Value Max of Value Count of Value Count of Value Count of Value Count of Value	
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value Min of Value Max of Value Max of Value Min of Value Average of Value Average of Value Min of Value Min of Value Min of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Min of Value Max of Value Average of Value Average of Value Average of Value Min of Value Min of Value Max of Value Max of Value Average of Value Average of Value Average of Value Min of Value Min of Value Min of Value Min of Value Min of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Max of Value Max of Value Min of Value Max of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DELTA BENZENE HEXACHLORIDE TOTWUG/L	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Max of Value Max of Value Max of Value Average of Value Count of Value Min of Value Min of Value Min of Value Min of Value Max of Value Max of Value Max of Value Moreage of Value Count of Value Average of Value Count of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DELTA BENZENE HEXACHLORIDE TOTWUG/L	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Min of Value Min of Value Min of Value Min of Value Min of Value Average of Value Count of Value Average of Value Count of Value Min of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DELTA BENZENE HEXACHLORIDE TOTWUG/L	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Max of Value Max of Value Min of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DELTA BENZENE HEXACHLORIDE TOTWUG/L	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Max of Value Max of Value Max of Value Min of Value Max of Value Max of Value Min of Value Min of Value Min of Value Min of Value Min of Value Max of Value Max of Value Max of Value Min of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DIAZINON IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Count of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Count of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DIAZINON IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Count of Value Count of Value Max of Value Max of Value Max of Value Min of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DIAZINON IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Min of Value Min of Value Average of Value Average of Value Average of Value Average of Value Min of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DIAZINON IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DIAZINON IN WHOLE WATER SAMPLE (UG/L) DIBROMOCHLOROMETHANE, WHOLE WATER, UG/L	Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Min of Value Min of Value Min of Value Max of Value Count of Value Min of Value Max of Value Min of Value Min of Value Max of Value Min of Value Min of Value Min of Value Min of Value Max of Value Max of Value Max of Value Min of Value Max of Value Max of Value Min of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DIAZINON IN WHOLE WATER SAMPLE (UG/L) DIBROMOCHLOROMETHANE, WHOLE WATER, UG/L	Count of Value Min of Value Max of Value Count of Value Count of Value Max of Value Max of Value Max of Value Min of Value Min of Value Max of Value Min of Value Max of Value Min of Value Max of Value Average of Value Count of Value Min of Value Min of Value Max of Value Min of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DIAZINON IN WHOLE WATER SAMPLE (UG/L) DIBROMOCHLOROMETHANE, WHOLE WATER, UG/L	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Min of Value Min of Value Average of Value Average of Value Average of Value Average of Value Min of Value	
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DIAZINON IN WHOLE WATER SAMPLE (UG/L) DIBROMOCHLOROMETHANE, WHOLE WATER, UG/L	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Min of Value Max of Value Max of Value Max of Value Max of Value Max of Value Min of Value Max of Value Min of Value Max of Value Min of Value Max of Value Min of Value	
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DIAZINON IN WHOLE WATER SAMPLE (UG/L) DIBROMOCHLOROMETHANE, WHOLE WATER, UG/L DICOFOL IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Count of Value Count of Value Min of Value Min of Value Max of Value Count of Value Min of Value Min of Value Max of Value Min of Value Min of Value Max of Value Min of Value Max of Value Min of Value Max of Value Min of Value Max of Value Max of Value Max of Value Max of Value Max of Value Min of Value Max of Value Min of Value Min of Value Min of Value Max of Value Max of Value Max of Value Max of Value Max of Value Min of Value Max of Value Max of Value Min of Value Min of Value Min of Value Max of Value Min of Value Max of Value Min of Value Max of Value Min of Value	
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DIAZINON IN WHOLE WATER SAMPLE (UG/L) DIBROMOCHLOROMETHANE, WHOLE WATER, UG/L DICOFOL IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Count of Value Count of Value Max of Value Max of Value Max of Value Min of Value Min of Value Max of Value Min of Value Max of Value Min of Value Max of Value Min of Value Max of Value Min of Value	
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DIAZINON IN WHOLE WATER SAMPLE (UG/L) DIBROMOCHLOROMETHANE, WHOLE WATER, UG/L DICOFOL IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Min of Value Min of Value Max of Value Min of Value	
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DIAZINON IN WHOLE WATER SAMPLE (UG/L) DIBROMOCHLOROMETHANE, WHOLE WATER, UG/L DICOFOL IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Max of Value Average of Value Count of Value Min of Value Max of Value	
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DIAZINON IN WHOLE WATER SAMPLE (UG/L) DIBROMOCHLOROMETHANE, WHOLE WATER, UG/L DICOFOL IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Count of Value Count of Value Max of Value Max of Value Max of Value Count of Value Min of Value Max of Value Min of Value Max of Value Min of Value Min of Value Max of Value Min of Value Max of Value	
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DIAZINON IN WHOLE WATER SAMPLE (UG/L) DIBROMOCHLOROMETHANE, WHOLE WATER, UG/L DICOFOL IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Max of Value Max of Value Max of Value Min of Value	0
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Min of Value Min of Value Max of Value Average of Value Count of Value Min of Value	
DDD IN WHOLE WATER SAMPLE (UG/L) DDE IN WHOLE WATER SAMPLE (UG/L) DDT IN WHOLE WATER SAMPLE (UG/L) DIAZINON IN WHOLE WATER SAMPLE (UG/L) DIBROMOCHLOROMETHANE, WHOLE WATER, UG/L DICOFOL IN WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value Max of Value Average of Value Max of Value Max of Value Max of Value Min of Value	

	Nat of Value Not Table Average of Value Count of Value	0.
ENDOSULFAN SULFATE TOTWUG/L	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	
ENDRIN IN WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value	0
ETHYLBENZENE TOTWUG/L	Count of Value Min of Value	
ETHYLBENZENE TOTWOG/L	Max of Value	
	Average of Value	0
	Count of Value	
GUTHION IN WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	
HARDNESS, DISSOLVED, CALCULATED (MG/L AS CaCO3)	Min of Value Max of Value	27
	Average of Value	296
	Count of Value	290
HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L)	Min of Value	
·· ···	Max of Value	
	Average of Value	0
	Count of Value	
HEPTACHLOR IN WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value	0
	Count of Value	
HEXACHLOROBENZENE IN WHOLE WATER SAMPLE (UG/L)	Min of Value Max of Value	1
	Average of Value	0
	Count of Value	0.
HYDROCARBON IN WATER, FREON EXT, CHROMAT, IR MG/	Min of Value	4
	Max of Value	4
	Average of Value	42
	Count of Value	
LEAD, DISSOLVED (UG/L AS PB)	Min of Value	
	Max of Value	0
	Average of Value Count of Value	0
LINDANE (GAMMA-BHC) IN WHOLE WATER SAMPLE (UG/L)	Min of Value	
(Max of Value	
	Average of Value	0
	Count of Value	
MAGNESIUM, DISSOLVED (MG/L AS MG)	Min of Value	20
	Max of Value	26
	Average of Value	23
	Count of Value	
MALATHION IN WHOLE WATER SAMPLE (UG/L)	Min of Value Max of Value	
	Average of Value	0
	Count of Value	
	Min of Value	
METHOXYCHLOR IN WHOLE WATER SAMPLE (UG/L)	Max of Value	
METHOXYCHLOR IN WHOLE WATER SAMPLE (UG/L)	Max of value	
METHOXYCHLOR IN WHOLE WATER SAMPLE (UG/L)	Average of Value	0
	Average of Value Count of Value	0
METHOXYCHLOR IN WHOLE WATER SAMPLE (UG/L) METHYLENE CHLORIDE TOTWUG/L	Average of Value Count of Value Min of Value	0
	Average of Value Count of Value Min of Value Max of Value	
	Average of Value Count of Value Min of Value Max of Value Average of Value	
METHYLENE CHLORIDE TOTWUG/L	Average of Value Count of Value Min of Value Max of Value	
	Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value	
METHYLENE CHLORIDE TOTWUG/L	Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value	0
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L)	Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value	0
METHYLENE CHLORIDE TOTWUG/L	Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Average of Value Average of Value Count of Value Min of Value	0
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L)	Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value	0
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L)	Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Min of Value Average of Value Count of Value Min of Value Min of Value Max of Value Average of Value Average of Value	0
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L) NICKEL, DISSOLVED (UG/L AS NI)	Average of Value Count of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Average of Value Count of Value	0
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L)	Average of Value Count of Value Max of Value Average of Value Count of Value Min of Value Min of Value Average of Value Count of Value Min of Value Max of Value Average of Value Max of Value Average of Value Max of Value Max of Value Min of Value	0
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L) NICKEL, DISSOLVED (UG/L AS NI)	Average of Value Count of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Average of Value Count of Value	0
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L) NICKEL, DISSOLVED (UG/L AS NI)	Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Min of Value Average of Value Average of Value Min of Value Max of Value Average of Value Average of Value Average of Value Min of Value Min of Value Min of Value Min of Value	0
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L) NICKEL, DISSOLVED (UG/L AS NI)	Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Min of Value Average of Value Count of Value Min of Value Max of Value Average of Value Average of Value Count of Value Max of Value	000000000000000000000000000000000000000
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L) NICKEL, DISSOLVED (UG/L AS NI) NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L AS N)	Average of Value Count of Value Min of Value Average of Value Average of Value Count of Value Min of Value Max of Value Min of Value Min of Value Average of Value Average of Value Average of Value Min of Value Min of Value Min of Value Min of Value Min of Value Min of Value Average of Value Count of Value Min of Value	0 0 0.1 0.5 0 0.5 0
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L) NICKEL, DISSOLVED (UG/L AS NI) NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L AS N)	Average of Value Count of Value Min of Value Average of Value Count of Value Count of Value Min of Value Average of Value Average of Value Min of Value Min of Value Average of Value Average of Value Count of Value Min of Value Min of Value Min of Value Min of Value Average of Value Count of Value Average of Value Min of Value Average of Value	0 0 0.1 0.56 0 0
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L) NICKEL, DISSOLVED (UG/L AS NI) NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L AS N)	Average of Value Count of Value Max of Value Average of Value Count of Value Max of Value Max of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value Max of Value	0
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L) NICKEL, DISSOLVED (UG/L AS NI) NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L AS N)	Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Min of Value Min of Value Min of Value Min of Value Min of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value	0 0 0 0.1 0.56 0 0 2 2 0.1
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L) NICKEL, DISSOLVED (UG/L AS NI) NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L AS N)	Average of Value Count of Value Min of Value Average of Value Count of Value Average of Value Min of Value Average of Value Average of Value Min of Value	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L) NICKEL, DISSOLVED (UG/L AS NI) NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L AS N)	Average of Value Count of Value Min of Value Average of Value Count of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Average of Value Average of Value Count of Value Max of Value Max of Value Max of Value Average of Value Count of Value Max of Value Max of Value Max of Value Min of Value Max of Value Max of Value Max of Value Max of Value Max of Value Average of Value Count of Value Max of Value Average of Value Max of Value Max of Value Max of Value Max of Value Max of Value	0 0 0 0.1 0.5 0 0 1 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L) NICKEL, DISSOLVED (UG/L AS NI) NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L AS N) NITROGEN, AMMONIA, TOTAL (MG/L AS N)	Average of Value Count of Value Min of Value Average of Value Count of Value Average of Value Min of Value Average of Value Average of Value Min of Value	0 0 0.1 0.5 0 0 1 0.5 0 0.5 0 0.2
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L) NICKEL, DISSOLVED (UG/L AS NI) NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L AS N)	Average of Value Count of Value Min of Value Average of Value Count of Value Average of Value Max of Value Max of Value Average of Value Count of Value Max of Value	0 0 0 0.1 0.56 0 0 2 0.1 0.56 0 0 2 0.2
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L) NICKEL, DISSOLVED (UG/L AS NI) NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L AS N) NITROGEN, AMMONIA, TOTAL (MG/L AS N)	Average of Value Count of Value Min of Value Average of Value Count of Value Average of Value Count of Value Min of Value	0 0 0 0.1 0.56 0 0 2 0.56 0 0 2 0.5 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L) NICKEL, DISSOLVED (UG/L AS NI) NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L AS N) NITROGEN, AMMONIA, TOTAL (MG/L AS N) NITROGEN, KJELDAHL, TOTAL, (MG/L AS N)	Average of Value Count of Value Max of Value Average of Value Count of Value Average of Value Max of Value Max of Value Average of Value Count of Value Max of Value	0 0 0.1 0.5 0 0.5 0 0.5 0 0.2 2 0.2 1.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0
METHYLENE CHLORIDE TOTWUG/L MIREX, TOTAL (UG/L) NICKEL, DISSOLVED (UG/L AS NI) NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L AS N) NITROGEN, AMMONIA, TOTAL (MG/L AS N)	Average of Value Count of Value Min of Value Average of Value Count of Value Average of Value Count of Value Min of Value Average of Value Average of Value Average of Value Average of Value Average of Value Min of Value Average of Value Count of Value Min of Value	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0

OXYGEN, DISSOLVED (MG/L)	Pivot Table	
OXYGEN, DISSOLVED MOCLement 2304 Station 13560 Water PARATHION IN WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value Count of Value	
PCB - 1242 PCB SERIES WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
PCB-1016 TOTWUG/L	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
PCB-1221 IN THE WHOLE WATER SAMPLE UG/L	Min of Value	
	Max of Value	
	Average of Value Count of Value	
PCB-1232 PCB SERIES WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
PCB-1248 PCB SERIES WHOLE WATER SAMPLE UG/L	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
PCB-1254 PCB SERIES WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value	
PCB-1260 PCB SERIES WHOLE WATER SAMPLE (UG/L)	Count of Value Min of Value	
TOD 1200 FOD GENILG WITCLE WATER SAWFLE (UG/L)	Max of Value	
	Average of Value	
	Count of Value	
PCBS IN WHOLE WATER SAMPLE (UG/L)	Min of Value	
	Max of Value	
	Average of Value	
	Count of Value	
PENTACHLOROBENZENE WHOLE WATER (UG/L)	Min of Value	
	Max of Value	
	Average of Value	
PH (STANDARD UNITS)	Count of Value Min of Value	7
FIT (STANDARD UNITS)	Max of Value	
	Average of Value	
	Count of Value	
PHEOPHYTIN-A UG/L SPECTROPHOTOMETRIC ACID. METH.	Min of Value	
	Max of Value	9
	Average of Value	
	Count of Value	
PHOSPHORUS, DISSOLVED ORTHOPHOSPHORUS(MG/L AS P)	Min of Value	
	Max of Value	
	Average of Value Count of Value	
PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)	Min of Value	
Theorem (More As T)	Max of Value	
	Average of Value	
	Count of Value	
PHOSPHORUS, IN TOTAL ORTHOPHOSPHATE (MG/L AS P)	Min of Value	
PHOSPHORUS, IN TOTAL ORTHOPHOSPHATE (MG/L AS P)		
PHOSPHORUS,IN TOTAL ORTHOPHOSPHATE (MG/L AS P)	Min of Value Max of Value Average of Value	
	Min of Value Max of Value Average of Value Count of Value	
PHOSPHORUS, IN TOTAL ORTHOPHOSPHATE (MG/L AS P) RESIDUE, TOTAL NONFILTRABLE (MG/L)	Min of Value Max of Value Average of Value Count of Value Min of Value	_
	Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value	
	Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value	
RESIDUE, TOTAL NONFILTRABLE (MG/L)	Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value	
	Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value	
RESIDUE, TOTAL NONFILTRABLE (MG/L)	Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value	1
RESIDUE, TOTAL NONFILTRABLE (MG/L)	Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value	1
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L)	Min of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value Min of Value Min of Value Max of Value Average of Value	1
RESIDUE, TOTAL NONFILTRABLE (MG/L)	Min of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Min of Value Min of Value Min of Value	11
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L)	Min of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Min of Value Min of Value Max of Value Max of Value Max of Value	11
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE,TOTAL FILTRABLE (DRIED AT 180C) (MG/L)	Min of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Max of Value Average of Value Average of Value Count of Value	11
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L)	Min of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Average of Value Count of Value Min of Value Min of Value Min of Value	11
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE,TOTAL FILTRABLE (DRIED AT 180C) (MG/L)	Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Max of Value Average of Value Count of Value Max of Value Min of Value Min of Value Min of Value Min of Value Min of Value Min of Value	11 4 64
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE,TOTAL FILTRABLE (DRIED AT 180C) (MG/L)	Min of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Min of Value Min of Value Min of Value Min of Value Average of Value Count of Value Min of Value	11 4 64
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE,TOTAL FILTRABLE (DRIED AT 180C) (MG/L) SELENIUM, DISSOLVED (UG/L AS SE)	Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Max of Value Average of Value Min of Value Max of Value Max of Value Max of Value Average of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value	11 4 64
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE,TOTAL FILTRABLE (DRIED AT 180C) (MG/L)	Min of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Min of Value Max of Value Max of Value Max of Value Min of Value Average of Value Count of Value Average of Value Average of Value Count of Value Min of Value Min of Value Min of Value	11 4 64
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE,TOTAL FILTRABLE (DRIED AT 180C) (MG/L) SELENIUM, DISSOLVED (UG/L AS SE)	Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Min of Value Max of Value Count of Value Min of Value Min of Value Max of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value Min of Value Min of Value Min of Value Min of Value Min of Value	11 4 64
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE,TOTAL FILTRABLE (DRIED AT 180C) (MG/L) SELENIUM, DISSOLVED (UG/L AS SE)	Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Max of Value	11 4 64
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE, TOTAL FILTRABLE (DRIED AT 180C) (MG/L) SELENIUM, DISSOLVED (UG/L AS SE) SILVER, DISSOLVED (UG/L AS AG)	Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value Max of Value	11 4 64
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE, TOTAL FILTRABLE (DRIED AT 180C) (MG/L) SELENIUM, DISSOLVED (UG/L AS SE)	Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Max of Value	
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE, TOTAL FILTRABLE (DRIED AT 180C) (MG/L) SELENIUM, DISSOLVED (UG/L AS SE) SILVER, DISSOLVED (UG/L AS AG)	Min of Value Max of Value Average of Value Count of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Average of Value Count of Value Min of Value Max of Value Max of Value Average of Value Count of Value Average of Value Count of Value Min of Value Min of Value Max of Value Max of Value Min of Value	
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE, TOTAL FILTRABLE (DRIED AT 180C) (MG/L) SELENIUM, DISSOLVED (UG/L AS SE) SILVER, DISSOLVED (UG/L AS AG)	Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Min of Value Max of Value Max of Value Min of Value Min of Value Average of Value Count of Value Min of Value Max of Value Min of Value Min of Value Min of Value Min of Value Min of Value Average of Value Count of Value Count of Value Min of Value	
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE, TOTAL FILTRABLE (DRIED AT 180C) (MG/L) SELENIUM, DISSOLVED (UG/L AS SE) SILVER, DISSOLVED (UG/L AS AG)	Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Max of Value	
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE, TOTAL FILTRABLE (DRIED AT 180C) (MG/L) SELENIUM, DISSOLVED (UG/L AS SE) SILVER, DISSOLVED (UG/L AS AG)	Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Min of Value Max of Value Max of Value Min of Value Min of Value Average of Value Count of Value Min of Value Average of Value Count of Value Min of Value	
RESIDUE, TOTAL NONFILTRABLE (MG/L) RESIDUE, VOLATILE NONFILTRABLE (MG/L) RESIDUE, TOTAL FILTRABLE (DRIED AT 180C) (MG/L) SELENIUM, DISSOLVED (UG/L AS SE) SILVER, DISSOLVED (UG/L AS AG)	Min of Value Max of Value Average of Value Count of Value Max of Value Max of Value Average of Value Count of Value Max of Value Max of Value Max of Value Max of Value Max of Value Average of Value Count of Value Min of Value Max of Value Max of Value Average of Value Count of Value Average of Value Count of Value Max of Value Max of Value Min of Value Max of Value Min of Value Max of Value Max of Value Min of Value Max of Value Min of Value Max of Value Min of Value	11 24 88 64

1050	Appendix A	May of Volue	269
1550	⁰ SULFATE (MG/LAS SO4) Rio Grande Segment 2304 Station 13560 Water P	ivot Table	192.7
		Count of Value	49
	TEMPERATURE, WATER (DEGREES CENTIGRADE)	Min of Value	4.5
		Max of Value	26.1
		Average of Value	18.9
		Count of Value	47
	TETRACHLOROETHYLENE TOTWUG/L	Min of Value	0
		Max of Value	0
		Average of Value	0.0
		Count of Value	1
	TOLUENE IN WTR SMPLE GC-MS, HEXADECONE EXTR.UG/L	Min of Value	0
		Max of Value	0
		Average of Value	0.0
		Count of Value	1
	TOXAPHENE IN WHOLE WATER SAMPLE (UG/L)	Min of Value	0
		Max of Value	0
		Average of Value	0.0
		Count of Value	4
	TRANS-1,2-DICHLOROETHENE, TOTAL, IN WATER UG/L	Min of Value	0
		Max of Value	0
		Average of Value	0.0
		Count of Value	2
	TRANS-1,3-DICHLOROPROPENETOTAL IN WATER UG/L	Min of Value	0
		Max of Value	0
		Average of Value	0.0
		Count of Value	2
	TRICHLOROETHYLENE-WHOLE WATER SAMPLE-UG/L	Min of Value	0
		Max of Value	0
		Average of Value	0.0
		Count of Value	2
	VINYL CHLORIDE-WHOLE WATER SAMPLE-UG/L	Min of Value	0
		Max of Value	0
		Average of Value	0.0
		Count of Value	2
	XYLENE WHL WATER SMPL (UG/L)	Min of Value	0
		Max of Value	0
		Average of Value	0.0
		Count of Value	2
	ZINC, DISSOLVED (UG/L AS ZN)	Min of Value	0
		Max of Value	0
		Average of Value	0.0
		Count of Value	6
	n of Value		0
	ax of Value		1312
	erage of Value		104.5
	ount of Value		1009
	of Value		0
	<pre>c of Value</pre>		1312
	rage of Value		104.5
Total Cou	int of Value		1009

APPENDIX B PHOTO LOG

Segment 2304, Station 13205, Rio Grande 14 km downstream from Eagle Pass, collecting GPS coordinates. Photo looking downstream (2001).

Segment 2304, Station 13205, Rio Grande 14 km downstream from Eagle Pass, looking upstream at the East Fork (2001).

Segment 2304, Station 13205, Rio Grande 14 km downstream from Eagle Pass, writing field notes into field logbook before collection of water samples (2001).

Segment 2304, Station 13560, Rio Grande 4.5 miles downstream of Del Rio, Texas at Moody Ranch. USGS and sampling personnel onsite (2001).

Segment 2304, Station 13560, Rio Grande 4.5 miles downstream of Del Rio, Texas at Moody Ranch. USGS and sampling personnel onsite (2001).

Segment 2304, Station 13208, Rio Grande at Del Rio, Texas, samplers returning to shore with filled cubitainers of water (2001).

Segment 2304, Station 13208, USGS spillway and gauges near Del Rio (2001).

Segment 2304, Station 13560, Moody Ranch sampling site (2001).

APPENDIX C TOXICITY TESTS LAB REPORTS AND DATA SUMMARY

Segment 2304, Rio Grande River below Amistad Reservior. Three stations total. 13205: Rio Grande River, Maverick County TX, 14 kı downstream from Eagle Pass/Piedras Negras International Bridge, near Irrigation Canal Lateral 50, at River km 785.8. 13208: Rio Grande River, Val Verde County TX, 12.8 miles below Amistad dam, near gage, 340 m upstream of US 277 bridge in Del Rio. 13560: Rio Grande River, Kinney County TX, 4.5 downstream of Del Rio at Moody Ranch. All statistical analyses were performed using a t-test with TOXSTAT and followed USEPA guidelines for whole effluent toxicity tests.

Samples collected on A Sample ID	Number Surviving	Percent Survival	Standard Deviation	p Value	Statistical Difference	Total # of Neonates	Mean # Neonates	Standard Deviation	C.V. (%)	p Value	Statistical Difference a=0.05
RHW (Control)	1	100	0.00	N/A	N/A	23	27.9	3.18	11.390859	0.05	N/A
						29 28 30 32 28 31 28 28 28 22					
13205	1	100	0.00	0.05	NO	14	22.6	11.20	49.54523	0.05	NO
						28 26 7 1 34 31 30 28 27					
13208	1	90	0.32	0.05	NO	13	15.7	8.55	54.465944	0.05	YES
	1 1 0 1 1 1 1 1 1 1 1					7 15 0 10 28 21 21 17 25					
13560	1 1 1 1 1 1 1 1 1 1 1 1 1	100	0.00	0.05	NO	16 31 33 38 17 36 35 30 31 36	30.3	7.72	25.471764	0.05	NO
13208-Dup	1 1 1 1 1 1 1 1 1 1 1	100	0.00	0.05	NO	19 21 27 28 13 5 29 31 35 29	23.7	9.19	38.776246	0.05	NO

Sample Event 1. Survival and reproduction of *Ceriodaphnia dubia* in Seven-day Aquatic Exposures Conducted April 29 - May 6, 2001. Samples collected on April 25, 2001.

Statistical Difference Number Percent Standard Statistical Total # of Mean # Standard Surviving Deviation Difference Neonates Deviation C.V. (%) a=0.05 Sample ID Survival p Value Neonates p Value RHW (Control) 0.00 1.14 4.0258597 0.05 N/A N/A 28.2 N/A 0.00 30.6 13.090038 0.05 NO 4.01 0.05 NO 22 27 16 0.32 24.8 38.338272 0.05 NO 9.51 0.05 NO 0.00 0.05 NO 28.2 7.38 26.154736 0.05 NO 17 13208-Dup 0.00 0.05 NO 25.4 6.06 23.854211 0.05 NO

Sample Event 2. Survival and reproduction of Ceriodaphnia dubia in Seven-day Aquatic Exposures Conducted May 26 - June 2, 2001. Samples collected on May 23 and 25, 2001.

Samples collected on Ju	Number Surviving	Percent Survival	Standard Deviation	p Value	Statistical Difference	Total # of Neonates	Mean # Neonates	Standard Deviation	C.V. (%)	p Value	Statistical Difference a=0.05
RHW (Control)	1	100	0.00	N/A	N/A	28	22.9	6.64	28.999053	0.05	a-0.03 N/A
	1 1 1 1 1 1 1 1 1 1	100	0.00	IVA	WA	18 28 29 25 10 26 21 29 15	22.7	0.04	28.999033	0.03	NA
13205	1	90	0.32	0.05	NO	24	24.9	5.70	22.910738	0.05	NO
	1 0 1 1 1 1 1 1 1					22 13 25 22 27 28 33 32 23					
13208	1 1 0 1 1 1 1 1 1 1	90	0.32	0.05	NO	17 21 28 30 27 29 29 25 34 25	26.5	4.81	18.16293	0.05	NO
13560	1 1 1 1 1 1 1 1 1 1 1	100	0.00	0.05	NO	25 21 27 21 26 27 22 28 21 18	23.6	3.41	14.431683	0.05	NO
13205-Dup		100	0.00	0.05	NO	27 19 32 24 28 24 23 26 30 17	25	4.64	18.571184	0.05	NO

Sample Event 3. Survival and reproduction of *Ceriodaphnia dubia* in Seven-day Aquatic Exposures Conducted June 8 - 15, 2001. Samples collected on June 7, 2001.

Sample ID	Number Surviving	Percent	Standard Deviation	p Value	Statistical Difference	Total # of Neonates	Mean # Neonates	Standard Deviation	C.V. (%)	p Value	Statistical Difference a=0.05
RHW (Control)		100	0.00	N/A	N/A	30 30 33 31 35 29 32 33 31 33	31.7	1.83	5.7690291	0.05	N/A
13208	1 1 0 1 1 1 1 1 1	90	0.32	0.05	NO	29 33 34 37 19 24 21 20 10 33	26	8.58	32.98636	0.05	NO
13560		100	0.00	0.05	NO	32 38 28 30 34 28 34 34 34 28 32	31.8	3.33	10.461195	0.05	NO
13208-Dup	0 0 0 0 0 0 0 0 0 0 0 0	0	0.00	0.05	NO	7 0 5 6 1 5 6 0 6	3.6	2.95	81.984976	0.05	YES

Sample Event 4a. Survival and reproduction of *Ceriodaphnia dubia* in Seven-day Aquatic Exposures Conducted June 21 - 28, 2001. Samples collected on June 19, 2001.

	Number Surviving	Percent	Standard	- Vales	Statistical			Standard			Statistical Difference
Sample ID	Surviving	Survival	Deviation	p Value	Difference		Neonates	Deviation	C.V. (%)	p Value	a=0.05
RHW (Control)	1	100	0.00	N/A	N/A	29	28.6	2.12	7.4080413	0.05	N/A
	1					24					
	1					28					
	1					29					
	1					29					
	1					30					
	1					32					
	1					30					
	1					27					
	1					28					
13205	1	90	0.32	0.05	NO	32	30.5	3.27	10.736001	0.05	NO
	1					34					
	0					31					
	1					28					
	1					28					
	1					28					
	1										
	1					30					
	1					31					
	1					37					
	1					26					

Sample Event 4b. Survival and reproduction of *Ceriodaphnia dubia* in Seven-day Aquatic Exposures Conducted June 22 - 29, 2001. Samples collected on June 21, 2001.

Samples concrea on se	Number	Percent	Standard		Statistical	Total # of	Mean #	Standard			Statistical Difference
Sample ID	Surviving	Survival	Deviation	p Value	Difference	Neonates	Neonates	Deviation	C.V. (%)	p Value	a=0.05
RHW (Control)	1	90	0.32	N/A	N/A	22	22.888889	2.85	12.442724	0.05	N/A
	1 1 1 1 1 1 1 1 0					24 21 26 17 26 22 25 23					
13205	1	90	0.32	0.05	N/A	27	25.9	3.90	15.058465	0.05	NO
	1 0 1 1 1 1 1 1 1					31 19 29 22 30 25 28 26 22					
13208	1	100	0.00	0.05	N/A	18	25.1	4.20	16.740444	0.05	NO
	1 1 1 1 1 1 1 1 1 1 1					29 29 20 25 29 21 29 24 27					
13560	1 1 1 1 1 1 1 1 1 1 1 1	100	0.00	0.05	N/A	26 28 28 25 22 29 21 26 26 26 28	25.9	2.64	10.207145	0.05	NO
13208-Dup	1	100	0.00	0.05	N/A	25	28.6	3.03	10.579772	0.05	NO
	1 1 1 1 1 1 1 1 1					28 25 30 27 31 26 33 28 33					

Sample Event 5. Survival and reproduction of *Ceriodaphnia dubia* in Seven-day Aquatic Exposures Conducted July 20 - 27, 2001. Samples collected on July 17 and 19, 2001.

Sample Event 6. Survival and reproduction of *Ceriodaphnia dubia* in Seven-day Aquatic Exposures Conducted August 10 - 17, 2001. Samples collected on August 07 & 09, 2001.

Sample ID	Number Surviving	Percent Survival	Standard Deviation	p Value	Statistical Difference	Total # of Neonates	Mean # Neonates	Standard Deviation	C.V. (%)	p Value	Statistical Difference a=0.05
RHW (Control)	1	90	0.32	N/A	N/A	33	30.2	3.01	9.9704987	0.05	N/A
	1 1 1 1 1 1 1 1 0					32 32 27 25 31 32 34 29 27					
13205	1	100	0.00	0.05	N/A	36	29.6	4.67	15.781845	0.05	NO
	1 1 1 1 1 1 1 1 1 1					34 32 30 27 30 24 24 24 24 35					
13208	1	100	0.00	0.05	N/A	36	31.1	3.35	10.766237	0.05	NO
	1 1 1 1 1 1 1 1 1 1					26 35 33 28 27 32 33 30 31					
13560	1	100	0.00	0.05	N/A	34	33.8	2.57	7.6135144	0.05	NO
	1 1 1 1 1 1 1 1 1					29 33 37 31 37 33 33 36 35					

Sample Event 7. Survival and reproduction of *Ceriodaphnia dubia* in Seven-day Aquatic Exposures Conducted January 2002 Samples collected on January 2002.

	Number	Percent	Standard		Statistical	Total # of	Mean #	Standard			Statistical
Sample ID	Surviving	Survival		p Value			Neonates	Deviation	C.V. (%)	p Value	Difference
RHW (Control)	1	100	0.00	N/A	N/A	30	27.8	3.43	12.321566	0.05	N/A
	1 1 1 1 1 1 1 1 1 1					25 21 31 26 27 32 29 26					
13205	1	90	0.32	0.05	NO	36	27.3	9.94	36.428014	0.05	NO
	1 1 1 1 1 1 1 0 1					31 28 33 28 28 28 31 0 30					
13208	1	100	0.00	0.05	NO	6	24.3	7.24	29.805024	0.05	NO
	1 1 1 1 1 1 1 1 1 1					32 22 23 31 29 26 25 25 24					
13560	1	100	0.00	0.05	NO	28	28.333333	2.24	7.8920046	0.05	NO
	1 1 1 1 1 1 1 1 1 1					30 26 27 33 27 26 29 29					
13205-Dup	1	100	0.00	0.05	NO	16	28.9	5.32	18.41475	0.05	NO
	1 1 1 1 1 1 1 1 1					31 29 32 31 35 28 33 29 25					

Samples conected on F											
Sample ID	Number Surviving	Percent Survival	Standard Deviation	p Value	Statistical Difference	Total # of Neonates	Mean # Neonates	Standard Deviation	C.V. (%)	p Value	Statistical Difference
RHW (Control)	1	100	0.00	N/A	N/A	25	22.3	3.95	17.692653	0.05	N/A
	1 1 1 1 1 1 1 1 1 1 1 1	100	0.00	1011		28 28 16 21 24 19 21 18 24 24 27		5.75	11.0/2005	0.05	1011
13205	1 1 1 1 1 1 1 1 1 1 1 1	100	0.00	0.05	NO	20 32 29 25 29 15 20 27 21 31	24.9	5.65	22.674863	0.05	NO
13208	1 1 1 1 1 1 1 1 1 1 1 1	100	0.00	0.05	NO	36 33 21 28 32 31 18 31 27 28	28.5	5.48	19.236122	0.05	NO
13560	1 1 1 1 1 1 1 1 1 1 1	100	0.00	0.05	NO	15 28 30 27 27 29 18 27 34 17	25.2	6.29	24.943597	0.05	NO
13208-Dup	· 1 1 1 · 1 1 1 1 1 1 1	100	0.00	0.05	NO	3 31 23 32 14 28 26 28	23.125	9.89	42.773511	0.05	NO

Sample Event 8. Survival and reproduction of *Ceriodaphnia dubia* in Seven-day Aquatic Exposures Conducted February 27 - March 5, 2002 Samples collected on February 26, 2002.

Samples collected on A	Number	Percent	Standard		Statistical	Total # of		Standard			Statistical
Sample ID	Surviving	Survival	Deviation	p Value	Difference	Neonates	Neonates	Deviation	C.V. (%)	p Value	Difference
RHW (Control)	1	90	0.32	N/A	N/A	27 25	23.2	10.26	44.22861	0.05	N/A
	1					30					
	1					10					
	1					23					
	1					31					
	1					30					
	0					0					
	1					31					
	1					25					
13205	1	100	0.00	0.05	NO	32	25.1	8.77	34.957495	0.05	NO
	1					29 27					
	1					3					
	1					20					
	1					26					
	1					22					
	1					30					
	1					29					
1000	1	4.0.0				33					110
13208	1	100	0.00	0.05	NO	27	28.7	2.75	9.5845208	0.05	NO
	1					32 24					
	1					33					
	1					27					
	1					31					
	1					30					
	1					27					
	1					28					
125(0	1	100	0.00	0.05	NO	28	20.0	2.11	10 202 (20	0.05	NO
13560	1	100	0.00	0.05	NO	24 34	29.9	3.11	10.392438	0.05	NO
	1					34 32					
	1					28					
	1					32					
	1					26					
	1					31					
	1					29					
	1					31					
12200 D	1	100	0.00	0.05	NO	32		2.02	15 ((212	0.05	NO
13208-Dup	1	100	0.00	0.05	NO	29 25	25	3.92	15.66312	0.05	NO
	1					25 20					
	1					20					
	1					20					
	1					19					
	1					22					
	1					25					
	1					30					
	1					30					

Sample Event 9. Survival and reproduction of *Ceriodaphnia dubia* in Seven-day Aquatic Exposures Conducted April 25 - May 02, 2002 Samples collected on April 23, 2002.

Segment 2304, Rio Grande River below Amistad Reservior. Three stations total. 13205: Rio Grande River, Maverick County TX, 14 km downstream from Eagle Pass/Piedras Negras International Bridge, near Irrigation Canal Lateral 50, at River km 785.8. 13208: Rio Grande River, Val Verde County TX, 12.8 miles below Amistad dam, near gage, 340 m upstream of US 277 bridge in Del Rio. 13560: Rio Grande River, Kinney County TX, 4.5 downstream of Del Rio at Moody Ranch. All statistical analyses were performed using a t-test with TOXSTAT and followed USEPA guidelines for whole effluent toxicity tests.

								Mean			
	Number	Percent	Percent	Standard		Statistical	Growth	Growth	Standard		Statistical
Sample ID	Surviving	Survival	Survival	Deviation	p Value	Difference	(mg)	(mg)	Deviation	p Value	Difference
RHW (Control)	9	90	95	5.77	N/A	N/A	0.33	0.315	0.02	0.05	N/A
	10	100					0.3				
	10	100					0.3				
	9	90					0.33				
13205	10	100	97.5	5.00	0.05	NO	0.3	0.3325	0.05	0.05	NO
	10	100					0.4				
	9	90					0.33				
	10	100					0.3				
13208	10	100	100	0.00	0.05	NO	0.4	0.45	0.17	0.05	NO
	10	100					0.4				
	10	100					0.3				
	10	100					0.7				
13560	10	100	97.5	5.00	0.05	NO	0.3	0.41	0.08	0.05	NO
	10	100					0.4				
	10	100					0.5				
	9	90					0.44				
13208-Dup	9	90	97.5	5.00	0.05	NO	0.56	0.415	0.11	0.05	NO
	10	100					0.3				
	10	100					0.4				
	10	100					0.4				

Sample Event 1. Survival and growth of *Pimephales promelas* in Seven-day Aquatic Exposures Conducted April 29 - May 6, 2001. Samples collected on April 25, 2001.

	N. 1		D					Mean			
	Number	Percent	Percent	Standard		Statistical	Growth	Growth	Standard		Statistical
Sample ID	Surviving	Survival	Survival	Deviation	p Value	Difference	(mg)	(mg)	Deviation	p Value	Difference
RHW (Control)	10	100	100	0.00	N/A	N/A	0.6	0.625	0.10	0.05	N/A
	10	100					0.5				
	10	100					0.7				
	10	100					0.7				
13205	9	100	85	17.32	0.05	NO	0.9	0.8375	0.14	0.05	NO
	9	90					0.67				
	6	60					1				
	9	90					0.78				
13208	9	90	95	5.77	0.05	NO	0.56	0.675	0.24	0.05	NO
	9	90					0.44				
	10	100					0.7				
	10	100					1				
13560	10	100	100	0.00	0.05	NO	0.9	0.775	0.10	0.05	NO
	10	100					0.7				
	10	100					0.8				
	10	100					0.7				
13208-Dup	8	80	87.5	9.57	0.05	NO	0.88	0.7675	0.18	0.05	NO
	10	100					0.8				
	8	80					0.5				
	9	90					0.89				

Sample Event 2. Survival and growth of *Pimephales promelas* in Seven-day Aquatic Exposures Conducted May 27 - June 3, 2001. Samples collected on May 23 and 25, 2001.

								Mean			
	Number	Percent	Percent	Standard		Statistical	Growth	Growth	Standard		Statistical
Sample ID	Surviving	Survival	Survival	Deviation	p Value	Difference	(mg)	(mg)	Deviation	p Value	Difference
RHW (Control)	10	100	100	0.00	N/A	N/A	0.7	0.65	0.17	0.05	N/A
	10	100					0.8				
	10	100					0.7				
	10	100					0.4				
13205	9	90	82.5	15.00	0.05	NO	0.56	0.565	0.05	0.05	NO
	9	90					0.6				
	6	60					0.5				
	9	90					0.6				
13208	9	90	95	5.77	0.05	NO	0.67	0.5075	0.16	0.05	NO
	9	90					0.56				
	10	100					0.5				
	10	100					0.3				
13560	9	90	95	5.77	0.05	NO	0.4	0.56	0.13	0.05	NO
	10	100					0.67				
	9	90					0.5				
	10	100					0.67				
13205-Dup	10	100	90	14.14	0.05	NO	0.2	0.485	0.20	0.05	NO
	9	90					0.67				
	7	70					0.57				
	10	100					0.5				

Sample Event 3. Survival and growth of *Pimephales promelas* in Seven-day Aquatic Exposures Conducted June 10 - 17, 2001. Samples collected on June 7, 2001.

								Mean			
	Number	Percent	Percent	Standard		Statistical	Growth	Growth	Standard		Statistical
Sample ID	Surviving	Survival	Survival	Deviation	p Value	Difference	(mg)	(mg)	Deviation	p Value	Difference
RHW (Control)	10	100	100	0.00	N/A	N/A	0.5	0.475	0.05	0.05	N/A
	10	100					0.4				
	10	100					0.5				
	10	100					0.5				
13205	10	100	74.75	44.09	0.05	NO	0.5	0.5675	0.08	0.05	NO
	10	9					0.5				
	10	100					0.6				
	9	90					0.67				
13208	9	90	95	5.77	0.05	NO	0.67	0.4675	0.16	0.05	NO
	10	100					0.3				
	10	100					0.5				
	9	90					0.4				
13560	9	90	95	5.77	0.05	NO	0.56	0.53	0.09	0.05	NO
	9	90					0.56				
	10	100					0.4				
	10	100					0.6				
13208-Dup	10	100	100	0.00	0.05	NO	0.4	0.475	0.10	0.05	NO
	10	100					0.6				
	10	100					0.4				
	10	100					0.5				

Sample Event 4. Survival and growth of *Pimephales promelas* in Seven-day Aquatic Exposures Conducted June 23 - 30, 2001. Samples collected on June 19 and 20, 2001.

								Mean			
	Number	Percent	Percent	Standard		Statistical	Growth	Growth	Standard		Statistical
Sample ID	Surviving	Survival	Survival	Deviation	p Value	Difference	(mg)	(mg)	Deviation	p Value	Difference
RHW (Control)	10	100	97.5	5.00	N/A	N/A	0.3	0.385	0.06	0.05	N/A
	10	100					0.4				
	9	90					0.44				
	10	100					0.4				
13205	10	100	77.25	45.50	0.05	N/A	0.4	0.375	0.10	0.05	NO
	10	9					0.5				
	10	100					0.3				
	10	100					0.3				
13208	10	100	100	0.00	0.05	N/A	0.3	0.25	0.06	0.05	YES
	10	100					0.3				
	10	100					0.2				
	10	100					0.2				
13560	9	90	95	5.77	0.05	N/A	0.33	0.3475	0.15	0.05	NO
	10	100					0.2				
	9	90					0.56				
	10	100					0.3				
13208-Dup	10	100	97.5	5.00	0.05	N/A	0.4	0.385	0.06	0.05	NO
	9	90					0.44				
	10	100					0.4				
	10	100					0.3				

Sample Event 5. Survival and growth of *Pimephales promelas* in Seven-day Aquatic Exposures Conducted July 21 - 28, 2001. Samples collected on July 17 and 19, 2001.

								Mean			
	Number	Percent	Percent	Standard		Statistical	Growth	Growth	Standard		Statistical
Sample ID	Surviving	Survival	Survival	Deviation	p Value	Difference	(mg)	(mg)	Deviation	p Value	Difference
RHW (Control)	7	100	95	5.77	N/A	N/A	0.714	0.445	0.18	0.05	N/A
	9	90					0.333				
	9	90					0.333				
	10	100					0.4				
13205	10	100	74.75	44.09	0.05	N/A	0.3	0.3905	0.09	0.05	NO
	7	9					0.429				
	10	100					0.5				
	9	90					0.333				
13208	10	100	90	11.55	0.05	N/A	0.6	0.41875	0.17	0.05	NO
	10	100					0.2				
	8	80					0.375				
	8	80					0.5				
13560	9	90	95	5.77	0.05	N/A	0.444	0.34425	0.11	0.05	NO
	10	100					0.2				
	10	100					0.4				
	9	90					0.333				

Sample Event 6. Survival and growth of *Pimephales promelas* in Seven-day Aquatic Exposures Conducted August 11 - 18, 2001. Samples collected on August 07 & 09, 2001.

Assessment of the Presence and Causes of Ambient Toxicity in Texas Waterbodies on the 1999 Clean Water Act 303(d) List to Support the Development of Total Maximum Daily Loads

Submitted to:

Mr. J. Andrew Sullivan, TMDL Program Manager TCEQ, MC-150 PO Box 13087 Austin, TX 78711-3087

Submitted by:

T.W. La Point, W.T. Waller, B.W. Brooks, P. K.Turner, J. K. Stanley Institute of Applied Sciences University of North Texas Denton, TX 76203-0559

TNRCC Work Order No. 582-2-44844

February 2003

Table of Contents

Tables and Appendices

Table 1. Ambient water and sediment toxicity data by station and test organisms
Table 2. Chain of custody for ambient toxicity tests
Table 3. Sediment Toxicity Identification Evaluation procedures
Table 4. Metal chemistry and toxic units of Alligator Bayou, station 10643,21 sediment porewater toxicity identification evaluation.
Table 5. Water quality criteria used in Alligator Bayou, station 10643, porewater
Table 6. Metal chemistry and toxic units of Finfeather Lake, station 11798, sediment25 porewater resin toxicity identification evaluation.
Table 7. Water quality criteria used in Finfeather Lake, station 11798,porewater
Appendix I. Sediment porewater toxicity identification evaluation tiered procedures
Appendix II. Conceptual Toxicity Strategy flow diagram

3

Introduction

Problem Definition

The Texas Natural Resource Conservation Commission (TNRCC) is responsible for administering provisions of the constitution and laws of the State of Texas to promote judicious use and the protection of the quality of waters in the State. A major aspect of this responsibility is the continuous monitoring and assessment of water quality to evaluate compliance with state water quality standards which are established within Texas Water Code, 26.023 and Title 30 Texas Administrative Code, 307.1-307.10. Texas Surface Water Quality Standards 30 TAC 370.4(d) specify that surface waters will not be toxic to aquatic life. Pursuant to the federal Clean Water Act 303(d), states must establish total maximum daily loads (TMDLs) for pollutants contributing to violations of water quality standards. The purpose of this contract is to support the assessment of the presence and causes of ambient toxicity in seven Texas waterbodies on the 2000 Federal Clean Water Act 303(d) List in an effort to comply with Texas law.

Ambient toxicity testing complements routine chemical monitoring to identify waterbodies with aquatic life impairment. Since 1989, the TNRCC has collected approximately 600 ambient water samples and 330 sediment samples to test for toxicity to sensitive aquatic organisms that serve as surrogates for indigenous species. The U.S. Environmental Protection Agency Houston Laboratory has performed the toxicity testing by standard protocols. Based on this toxicity testing data, eight Texas waterbodies are identified on the 2000 CWA 303(d) list as impaired due to potential acute or chronic toxicity of ambient water and/or sediments. However, toxic effects to indigenous species in the natural systems have not been confirmed. Also, chemical toxicants or stressors responsible for the observed toxic effects in the laboratory have not yet been identified. Thus, the TNRCC needs a more thorough and intensive assessment of the existence of toxicity and identification of likely toxicants in several waterbodies. Based on the results of this assessment, the TNRCC may elect to remove a waterbody from the 303(d) list for toxicity, if evidence supports a conclusion that no toxicity is occurring in the waterbody, or to develop total maximum daily loads for identified toxicants or stressors.

UNT had responsibility to test water and/or sediments from the following five waterbodies of concern (Note that Vince Bayou and Arroyo Colorado Tidal testing were conducted by a separate laboratory and that Patrick Bayou was part of a different project):

- 1. Alligator Bayou (Segment 0702A) in Jefferson County (toxicity in water and sediment)
- 2. Bryan Municipal Lake (Segment 1209A) in Brazos County (toxicity in sediment)
- 3. Finfeather Lake (Segment 1209B) in Brazos County (toxicity in sediment)
- 4. Rio Grande (Segment 2304) in Kinney, Maverick, and Webb Counties (toxicity in water)
- 5. Rio Grande (Segment 2306) in Presidio County (toxicity in water).

Water and Sediment Testing on the Segments of Concern

Sediment and water samples were received from Parsons personnel and tested at the UNT/IAS Aquatic Toxicology Laboratory, Denton, TX, to determine acute and sublethal effects of exposure on four species of freshwater organisms. The criterion for effect was survival, although growth and reproduction were monitored, as appropriate. All raw data related to this study are stored at UNT. Data are presented as hard copy data files and also were supplied to Parsons ES in Excel worksheet format.

Materials and Methods

1. Aqueous and Sediment Testing.

Test Conditions

All standardized sediment and water bioassays followed USEPA guidelines for effluents (USEPA 1992). *Ceriodaphnia dubia* and *Pimephales promelas* 7-day tests were conducted at 25°C with 16:8 hour light: dark cycles at the Institute of Applied Sciences, Aquatic Toxicology Laboratory, University of North Texas. Temperature, dissolved oxygen, conductivity and pH were measured in each aqueous sample prior to daily renewals using YSI meters.

Ceriodaphnia dubia and *Pimephales promelas* were selected as test organisms for aqueous testing. Standardized whole sediment bioassays using *Chironomus tentans* and *Hyalella azteca* were selected for this study. *Ceriodaphnia dubia, Pimephales promelas,* and *Chironomus tentans* and *Hyalella azteca* are widely used in ambient and research testing of waterborne and sediment contaminants, respectively. In addition, an expansive literature exists for the relative sensitivities of each selected organism to numerous contaminants with different modes of toxicological action.

Statistical Analyses

ANOVA and Dunnett's multiple range tests were used to identify samples in which survival was statistically lower from the negative controls. The survival proportions were transformed using Arcsine transformation ($\sqrt{p^2}_i$), where $p_i =$ proportion surviving in replicates. The data were then examined for homogeneity of variance and departure from normality using Bartlett's and Shapiro-Wilks tests, respectively. If the data were normally distributed and the variances homogenous, the transformed data were analyzed with a one-way ANOVA. If the F test of the ANOVA was significant (p<0.05), differences between the mean of each sample were compared with the control using Dunnett's test. Dunnett's test is specifically intended to compare treatment means with a control. If the F test in the ANOVA is not significant, no further analysis is performed, and the sample means are then statistically similar to the control. When the assumptions of normality and variance homogeneity cannot be verified, Steel's Many One Rank Test is used to examine differences between treatments and a control when assumptions of normality and variance between the assumptions and a control when assumptions of normality and variance between treatments and a control when assumptions of normality and variance between treatments and a control when assumptions of normality and variance between the assumptions and a control when assumptions of normality and variance between the control and each mean. Steel's Test is

Test Material 1.: Aqueous Samples.

Water samples were obtained from Parsons ES. All samples were shipped in 48 quart coolers on ice. A chain of custody form was initiated at the time samples were obtained. Sample label information was recorded in the receiving log as was date received at UNT. Sample coolers were visually checked at arrival to UNT; all samples were on ice upon arrival. Samples were maintained at 4°C in a walk-in refrigerator prior to testing. Sample identification, date of receipt, date of testing, and holding time are summarized in Table 2.

Control Water

Reconstituted hard water (RHW) served as control water for all water toxicity tests. RHW was prepared in 50-L batches following procedures outlined by Knight & Waller (1987) with the following exceptions: 1) initial water used to prepare RHW was reverse-osmosis deionized water, 2) glass columns were packed with granular activated carbon obtained from Culligan Water Conditioning, and 3) the final solution was not bubbled with CO₂ but vigorously aerated for at least 24 h.

Test Organisms

To feed the invertebrates, *Selenastrum capricornutum* (Printz) was cultured in 50-ml glass screw-cap culture tubes, 2-L Erlenmeyer flasks, and 20-L polycarbonate carboys. Solid-media slant cultures were obtained from UTEX Culture Collection of Algae (University of Texas at Austin).

Algal cells were resuspended, and 1 ml was transferred aseptically to 3 or 4 50-ml culture tubes containing 15 ml sterile Gorham's medium [ATCC 1974] (Gorham's tubes) and capped with foam plugs. Gorham's tubes were placed on a wrist-arm shaker and allowed to incubate at 22° C for 4 to 7 days. A 24-h light source was provided by cool-white fluorescent bulbs such that the light intensity was approximately 1500 lux.

After incubation, 1 ml from each tube was used to inoculate an additional 3 or 4 Gorham's tubes. These were allowed to incubate for 7 days. This second set of Gorham's tubes were used to inoculate additional tubes and 2-L flasks. After inoculation of new tubes, the remaining algal suspension was poured aseptically into 2-L foam plugged flasks containing 1 L sterile AAP medium (ATCC 1984), and a stir bar. Flasks were placed on magnetic stir plates and incubated for 7 days. Incubation conditions were the same as for the Gorham's tubes. At the end of the incubation period, the contents of the flasks were poured into 20-L carboys containing 5 to 6 L sterile AAP medium. Carboys were incubated under the same conditions as described above. In addition, vigorous aeration was provided throughout incubation. An additional 6 L sterile AAP medium was added to each carboy at 2 and 4 d after inoculation. 25 ml vitamin suspension was also added to each carboy on the sixth day of incubation. The vitamin suspension was prepared by crushing one Centrum Silver multivitamin with a mortar and pestle and mixing the resulting powder in 100 ml distilled water. On the seventh day, carboys were capped and stored in the dark at 4°C until needed.

Ceriodaphnia dubia and *Pimephales promelas* used for standardized testing were obtained from permanent cultures at the Institute of Applied Sciences, Aquatic Toxicology Laboratory, University of North Texas. All *P. promelas* culture and testing procedures followed U.S. Environmental Protection Agency (USEPA 1994) recommendations. *Ceriodaphnia dubia* were cultured in standard synthetic RHW (USEPA 1991) without the addition of sodium selenate. *C. dubia* were mass cultured as described by Knight & Waller (1992) with the following modifications: 1) 500-ml culture jars contained 300 ml RHW, 2) mass cultures were fed 10 ml algae-Cerophyl suspension for the first 4 d, 3) mass cultures were initiated with less than 12-hold neonates but not necessarily within 4 h of each other, and 4) fluorescent lights were not covered with dark plastic, hence light intensity in the test chamber was approximately 125 lux (Hemming, et al. 2002).

C. dubia received the same feeding suspension in both mass culture and during 7-d toxicity tests. Algal cells were retrieved from 20-L carboys by centrifugation. The supernatant (AAP medium) was discarded, and the remaining algal pellets were rinsed with RHW. Algal cells were finally resuspended in 500 to 600 ml RHW and counted using a hemocytometer. This algae concentrate was stored in the dark at 4° C until needed. The final feeding suspension consisted of a mixture of algae and Cerophyl and was prepared following procedures described by Knight and Waller (1992).

Seven day toxicity tests with *Ceriodaphnia dubia* were conducted following general procedures recommended by the U.S. Environmental Protection Agency (1994) except the yeast-cerophyl-trout chow feeding suspension was replaced by that described above (Hemming et al. 2002). Toxicity tests were initiated within 4 d of receiving samples. 15 ml water from each segment or RHW was poured into each of ten 30-ml polystyrene cups. 0.5 ml algae-Cerophyl feeding suspension was added and one < 24-h-old neonate was then placed in each cup. Following a random block design, neonates were transferred from cultures to exposure cups using an eyedropper. Cups were covered with glass plates to prevent evaporation.

Test Material 2 : Sediment Samples.

Sediment samples were collected by Parsons ES personnel and delivered to UNT by Federal Express couriers. A chain of custody form was initiated at the time samples were obtained. Sample label information was recorded in a chain of custody receiving log when received at UNT. Sample coolers were visually checked at arrival to UNT; all samples were on ice. All samples were contained in 3.5 gallon buckets. Samples were maintained at 4°C in a walk-in refrigerator prior to testing. Sample identification, date of receipt, date of testing, and holding time are summarized in Table 2.

Control Water

Dechlorinated tap water was used as overlying water for *Hyalella azteca* and *Chironomus tentans* cultures and whole sediment tests (USEPA 2000).

Test Organisms

Hyalella azteca and *Chironomus tentans* used for standardized testing were obtained from permanent cultures at the Institute of Applied Sciences, Aquatic Toxicology Laboratory, University of North Texas. UNT *H. azteca* were originally obtained from US Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS. UNT *C. tentans* were originally obtained from Environmental Consulting and Testing, Superior, WI.

Test Conditions

All standardized sediment bioassays followed USEPA guidelines for whole sediments (USEPA 2000). *H. azteca* and *C. tentans* tests were conducted at 23°C with 16:8 hour light: dark cycles at the Institute of Applied Sciences, Aquatic Toxicology Laboratory, University of North Texas.

Sediment Preparation

Following USEPA recommendations (EPA 2000), sediments were not sieved to remove indigenous organisms before addition to beakers, however, large indigenous organisms and large debris were removed with forceps. On Day 1, sediment samples were homogenized using a stainless steel or Teflon spoon for five minutes. Once homogenized, 100 ml aliquots of sediment were placed in each 300 ml high-form lipless beaker. Eight replicate exposure chambers for each treatment were randomly assigned to a Zumwalt dilution box. After addition of sediment, 175 ml of dechlorinated tap water.

Addition of Organisms

Sediments samples were tested separately with *H. azteca* and *C. tentans*. On Day 0, 10 second-instar (about 10 days old) *C. tentans* larvae and 7 -14 day old *H. azteca* (1 - 2 day age range) organisms were introduced to replicate units under the air-water interface (EPA 2000).

Feeding

On Test Days 0 - 9, *H. azteca* and *C. tentans* were fed 1.0 ml of YCT ("Yeast-Cerophyll-Tetrafin" mix) and 1.5 ml of an aqueous solution of Tetrafin fish food, respectively (EPA 2000).

Renewal of Overlying Water

Approximately 1.5 volume additions per day of dechlorinated tap water were supplied to each beaker by a Mount-Brungs diluter and a Zumwalt delivery system (EPA 2000). Using YSI meters, temperature and dissolved oxygen were measure daily during testing for a randomly selected experimental unit.

Test Termination

Sediment tests were terminated following a 10-d exposure period. Experimental units were removed from Zumwalt boxes and test organisms recovered with sieves. *H. azteca* from each unit were rinsed with deionized water and placed on tared aluminum pans then dried at 60°C for 24 hours. Following 24 hours, dry weights were determined. *C. tentans* from each unit were

rinsed with deionized water and placed on tared aluminum pans then dried at 60°C for 24 hours. Following 24 hours, dry weights were determined. Dried *C. tentans* were subsequently oxidized at 550°C for 1 hour using a muffle furnace. Ashed aluminum pans were then re-weighed to determine somatic growth.

Reference Sediment (Negative Control)

All sediment tests were accompanied by a negative control reference sediment (control sediments). Negative control reference sediment was obtained by UNT personnel from the University of North Texas Water Research Field Station, Denton, TX. The principal reason for selecting this site as a suitable reference sediment is our knowledge of little previous anthropogenic activity, supported by analytical chemistry data from previous studies (e.g. Suedell et al. 1993). Additional chemical analysis indicated that these sediments were not contaminated.

Reference Toxicant (Positive Control)

A positive control reference toxicant 48-hour test was conducted for each organism. Cadmium was selected as the reference toxicant because of extensive literature LC_{50} values for each organism used in this study. *P. promelas* and *C. dubia* tests were conducted according to EPA guidelines (1992). *H. azteca* tests were conducted according to Steevens and Benson. LC_{50} s (95% conf. limits) for *H. azteca*, *P. promelas*, *C. dubia* were 18.8 ug/L (15.2, 22.0), 34.5 ug/L (29.4, 40.7), 36.7 ug/L (31.1, 43.1), respectively.

2. Sediment TIE.

U.S. EPA has not finalized sediment porewater or whole sediment Toxicity Identification Evaluation (TIE) methodology. Draft sediment TIE guidelines are available for porewaters and elutriates (EPA 1991) and closely follow effluent TIE procedures. Some whole sediment procedures for reducing toxicity of specific toxicant classes have been reported in the literature; however, whole sediment TIE procedures are not published in guideline format (Ho et al. 2002). Therefore, a tiered approach based on porewater tests was employed in this project (Ankley and Schubauer-Berigan 1995). Additional whole sediment TIE procedures were performed on Alligator Bayou and Fin Feather Lake sediments. Generally, 40-60% of sediment volume was isolated as pore water. *Ceriodaphnia dubia* was chosen for pore water testing because of test volume requirements. We also used *Hyalella azteca* and *Chironomus tentans* to test whole sediments.

All general porewater TIE procedures followed EPA (1991) draft guidelines. Whole sediment TIEs followed procedures previously reported in the peer-reviewed literature. In addition to draft EPA TIE procedures, we used three ion exchange media to remove organic or metal toxicants. The cation exchange resin SIR-300, a styrene and divinylbenzene copolymer with iminodiacetic functional group in the sodium form, was chosen for metal removal because of its ability to chelate heavy metal cations (ResinTech, New Berlin NJ). SIR-300 was previously suggested as an effective metal treatment in sediment TIE procedures (Burgess et al. 2000). SIR-300 affinity for metals is:

 $Hg^{2+}>Cu^{2+}>V^{2+}>Pb^{2+}>Ni^{2+}>Zn^{2+}>Co^{2+}>Cd^{2+}>Fe^{2+}>Be^{2+}, Mn^{2+}>Mg^{2+}, Ca^{2+}>Sr^{2+}>Ba^{2+}>Na^{2+}.$

Although SIR-300 is a parallel TIE treatment to EDTA for divalent metals, we used SIR-300 in addition to EDTA because metals reduced by SIR-300 may be measured following TIE treatment. Because conventional TIE treatments are not effective for arsenic contaminated media, SIR-900, a synthetic aluminum oxide absorbent media specific for arsenic (arsenate and arsenite) and lead, was utilized in several TIE procedures for Fin Feather Lake sediment because of historic arsenic contamination (ResinTech, West Berlin NJ). C18 solid phase extraction columns, typically used in TIE procedures to remove organic contaminants, may also filter or remove other contaminants (e.g. metals) and complicate TIE interpretation. We chose Ambersorb 563, a carbonaceous adsorbent, for organic removal because it has 5 to 10 times the capacity of granular activated carbon. We used Ambersorb 563 in addition to C18 treatment in several TIEs to selectively remove organics without filtration complications. Ambersorb has been used to treat contaminants in sediment TIE procedures (West et al. 2002) and to remove organic contaminants in sediment TIE procedures (West et al. 2001). Appendix I provides a summary of tiered procedures we developed and followed for porewater and sediment TIEs.

Table 1. Assessment of Presence and Causes of Ambient Toxicity in Texas Waterbodies. University of North Texas, Institute of Applied Sciences. Water and sediment toxicity data summarized by station and test organisms. Mean and standard deviation statistics identify *Pimephales promelas*, *Chironomus tentans* and *Hyalella azteca* mortality (proportion surviving) and growth weights (mg), and *Ceriodaphnia dubia* mortality (percent survival) and reproduction (total number of neonates) endpoints. Statistical significant differences from control water or sediment were determined at $\alpha = 0.05$ and are identified by either Yes for a significant difference or No for a non-significant difference.

Segment	Event	Station	Matrix	Organism	Endpoint	Mean	S. D.	Sig. Effect (p=0.05)
2304	1	13205	Water	C. dubia	Reproduction	22.600	11.197	No
2304	1	13208	Water	C. dubia	Reproduction	15.700	8.551	Yes
2304	1	13560	Water	C. dubia	Reproduction	30.300	7.718	No
2304	1	2304QA	Water	C. dubia	Reproduction	23.700	9.190	No
2304	1	13205	Water	P. promelas	Growth	0.333	0.047	No
2304	1	13208	Water	P. promelas	Growth	0.450	0.173	No
2304	1	13560	Water	P. promelas	Growth	0.410	0.084	No
2304	1	13560	Water	P. promelas	Growth	0.415	0.108	No
2304	2	13205	Water	C. dubia	Reproduction	30.600	4.006	No
2304	2	13208	Water	C. dubia	Reproduction	24.800	9.508	No
2304	2	13560	Water	C. dubia	Reproduction	28.200	7.376	No
2304	1	2304QA	Water	C. dubia	Reproduction	25.400	6.059	No
2304	2	13205	Water	P. promelas	Growth	0.850	0.129	No
2304	2	13208	Water	P. promelas	Growth	0.675	0.250	No
2304	2	13560	Water	P. promelas	Growth	0.775	0.096	No
2304	2	2304QA	Water	P. promelas	Growth	0.775	0.189	No
2304	3	13205	Water	C. dubia	Reproduction	24.900	5.705	No
2304	3	13208	Water	C. dubia	Reproduction	26.500	4.813	No
2304	3	13560	Water	C. dubia	Reproduction	23.600	3.406	No
2304	3	2304QA	Water	C. dubia	Reproduction	25.000	4.643	No

Table 1C. Segment 2304: Rio Grande River below Amistad Reservior.

Table 1C, continued. Segment 2304: Rio Grande River below Amistad Reservior.

2304	3	13205	Water	P. promelas	Growth	0.575	0.050	No
2304	3	13208	Water	P. promelas	Growth	0.525	0.171	No
2304	3	13560	Water	P. promelas	Growth	0.575	0.150	No
2304	3	2304QA	Water	P. promelas	Growth	0.500	0.216	No
2304	4	13205	Water	C. dubia	Reproduction	30.500	3.275	No
2304	4	13208	Water	C. dubia	Reproduction	25.900	8.491	No
2304	4	13560	Water	C. dubia	Reproduction	31.800	3.327	No
2304	4	2304QA	Water	C. dubia	Reproduction	0.000	0.000	Yes
2304	4	13205	Water	P. promelas	Growth	0.575	0.096	No
2304	4	13208	Water	P. promelas	Growth	0.475	0.171	No
2304	4	13560	Water	P. promelas	Growth	0.550	0.100	No
2304	4	2304QA	Water	P. promelas	Growth	0.475	0.096	No
2304	5	13205	Water	C. dubia	Reproduction	25.900	3.900	No
2304	5	13208	Water	C. dubia	Reproduction	25.100	4.202	No
2304	5	13560	Water	C. dubia	Reproduction	25.900	2.644	No
2304	5	13205	Water	P. promelas	Growth	0.375	0.096	No
2304	5	13208	Water	P. promelas	Growth	0.250	0.058	No
2304	5	13560	Water	P. promelas	Growth	0.348	0.152	No
2304	6	13205	Water	C. dubia	Reproduction	29.600	4.671	No
2304	6	13208	Water	C. dubia	Reproduction	31.100	3.348	No
2304	6	13560	Water	C. dubia	Reproduction	33.800	2.573	No
2304	6	13205	Water	P. promelas	Growth	0.391	0.091	No
2304	6	13208	Water	P. promelas	Growth	0.419	0.172	No
2304	6	13560	Water	P. promelas	Growth	0.344	0.106	No
2304	7	13205	Water	C. dubia	Reproduction	27.300	9.94	No
2304	7	13208	Water	C. dubia	Reproduction	24.300	7.24	No
2304	7	13560	Water	C. dubia	Reproduction	28.333	2.24	No
2304	7	QA	Water	C. dubia	Reproduction	28.900	5.32	No
2304	8	13205	Water	C. dubia	Reproduction	24.900	5.65	No
2304	8	13208	Water	C. dubia	Reproduction	28.500	5.48	No
2304	8	13560	Water	C. dubia	Reproduction	25.200	6.29	No
2304	8	QA	Water	C. dubia	Reproduction	23.125	9.89	No
2304	9	13205	Water	C. dubia	Reproduction	25.100	8.77	No
2304	9	13208	Water	C. dubia	Reproduction	28.700	2.75	No
2304	9	13560	Water	C. dubia	Reproduction	29.900	3.11	No
2304	9	QA	Water	C. dubia	Reproduction	25.000	3.92	No
12205	1 4 1	1 /	C E 1 D	/D' 1) I	T () 1 D 1	T •	C 11 1 1 70	· D *

13205: 14 km downstream from Eagle Pass/Piedras Negras International Bridge, near Irrigation Canal Lateral 50, at River km 785.8, Maverick County TX.

13208: 12.8 miles below Amistad dam, near gage, 340 m upstream of US 277 bridge in Del Rio, Val Verde County TX. 13560: 4.5 downstream of Del Rio at Moody Ranch, Kinney County TX.

Table 2. Chain of Custody Record. Assessment of Presence and Causes of Ambient Toxicity in Texas	
Waterbodies. University of North Texas, Institute of Applied Sciences.	

Segment	Event	Station	Matrix	Collect Date	Test Initiated	Hold Time Met
0702	1	10643	Water	04/19/2001	04/23/2001	YES
2304	1	13205	Water	04/25/2001	04/29/2001	YES
2304	1	13208	Water	04/25/2001	04/29/2001	YES
2304	1	13560	Water	04/25/2001	04/29/2001	YES
2304	1	QA13208	Water	04/25/2001	04/29/2001	YES
2304	2	13205	Water	05/25/2001	05/26, 27/2001	YES
2304	2	13208	Water	05/23/2001	05/26, 27/2001	YES
2304	2	13560	Water	05/23/2001	05/26, 27/2001	YES
2304	2	QA??	Water	05/23/2001	05/26, 27/2001	YES
2304	3	13205	Water	06/07/2001	06/08, 11/2001	YES
2304	3	13208	Water	06/07/2001	06/08, 11/2001	YES
2304	3	13560	Water	06/07/2001	06/08, 11/200	YES
2304	3	QA13205	Water	06/07/2001	06/08, 11/2001	YES
2304	4	13205	Water	06/21/2001	06/22, 23/2001	YES
2304	4	13208	Water	06/19/2001	06/21, 23/2001	YES
2304	4	13560	Water	06/19/2001	06/21, 23/2001	YES
2304	4	QA??	Water	06/19/2001	06/21, 23/2001	YES
2304	5	13205	Water	07/19/2001	07/20, 21/2001	YES

2304	5	13208	Water	07/17/2001	07/20, 21/2001	YES
2304	5	13560	Water	07/17/2001	07/20, 21/2001	YES
2304	5	QA1320	Water	07/17/2001	07/20, 21/2001	YES
2304	6	13205	Water	08/09/2001	08/10, 11/2001	YES
2304	6	13208	Water	08/07/2001	08/10, 11/2001	YES
2304	6	13560	Water	08/07/2001	08/10, 11/2001	YES
2304	7	13205	Water	01/15/2002	01/16/2002	YES
2304	7	13208	Water	01/15/2002	01/16/2002	YES
2304	7	13560	Water	01/15/2002	01/16/2002	YES
2304	7	QA	Water	01/15/2002	01/16/2002	YES
2304	8	13205	Water	02/26/2002	02/27/2002	YES
2304	8	13208	Water	02/26/2002	02/27/2002	YES
2304	8	13560	Water	02/26/2002	02/27/2002	YES
2304	8	QA	Water	02/26/2002	02/27/2002	YES
2304	9	13205	Water	04/23/2002	04/25/2002	YES
2304	9	13208	Water	04/23/2002	04/25/2002	YES
2304	9	13560	Water	04/23/2002	04/25/2002	YES
2304	9	QA	Water	04/23/2002	04/25/2002	YES

¹ Two dates correspond to initiation of *C. dubia* and *P. promelas* tests, respectively. Only *C. dubia* tests were performed following events 7 through 9.

13205: 14 km downstream from Eagle Pass/Piedras Negras International Bridge, near Irrigation Canal Lateral 50, at River km 785.8, Maverick County TX.
13208: 12.8 miles below Amistad dam, near gage, 340 m upstream of US 277 bridge in Del Rio, Val Verde County TX.

13560: 4.5 downstream of Del Rio at Moody Ranch, Kinney County TX.

Results and Discussion

Ambient toxicity test results for the segments assessed during this project are detailed in Table 1. Table 1 provides summary data for each ambient toxicity test conducted on the segment, the matrix used (water or sediment), the organism tested, and the endpoint measured (mortality, growth, or reproduction). Each endpoint has an associated response, reported as the mean response, plus the standard deviation. For *Pimephales promelas, Chironomus tentans and Hyalella azteca*, mortality was measured as proportion surviving. For *Ceriodaphnia dubia*, survivorship is measured as percentage survival. Growth for *Pimephales promelas, Chironomus tentans and Hyalella azteca* was measured as mean body weight (mg). Reproduction for *Ceriodaphnia dubia* was measured as total number of neonates produced per adult female during the 7-d test.

Survival data were used to calculate percent survival for each replicate. Mean and standard deviation were calculated for each sample. Statistical analyses were performed as defined above, with the exception of the *Ceriodaphnia* results, which were analyzed using Fishers Exact test (USEPA 1994).

Table 1C; Segment 2304: Rio Grande River below Amistad Reservoir.

Survival of *C. dubia* was significantly affected (100% mortality) in station 2304 QA samples during sampling event 4. We have no explanation for this other than experimental error because all other samples exhibited 100% survival. *C. dubia* reproduction was significantly affected during only two sampling events and from different stations (event 1, 13208; event 4, QA sample). No other toxicity was observed during the nine sampling periods in this segment.

P. promelas survival was not found to be significantly affected, in any sample, during any of the six sampling events. Significant effects on *P. promelas* growth were observed once in six sampling events (Event 5, Station 13208). No other growth effects were observed.

References

American Type Culture Collection. 1984. Media Handbook. Rockville, MD.

- Ankley GT and MK Schubauer-Berigan. 1995. Background and overview of current sediment toxicity identification evaluation procedures. *Journal of Aquatic Ecosystem Health* 4: 133-149.
- APHA, AWWA, WEF. 1995. Standard Methods for the Examination of Water and Wastewater, 19th Edition. American Public Health Association, Washington DC.
- Burgess RM, Cantwell MG, Pelletier MC, Ho KT, Serbst JR, Cook HF and A Kuhn. 2000. Development of a toxicity identification evaluation procedure for characterizing metal toxicity in marine sediments. *Environmental Toxicology and Chemistry* 19: 982-991.
- Guzzella L, Ferretti D and S Monarca. 2002. Advanced oxidation and adsorption technologies for organic micropollutant removal from lake water used as drinking-water supply. *Water Research*: In Press.
- Hemming JM, Turner PK, Brooks BW, Waller WT and TW La Point. 2002. Assessment of toxicity reduction in wastewater effluent flowing through a constructed wetland using *Pimephales promelas, Ceriodaphnia dubia*, and *Vibrio fischeri. Archives of Environmental Contamination and Toxicology* 42: 9-16.
- Ho KT, Burgess RM, Pelletier MC, Serbst JR, Ryba SA, Cantwell MG, Kuhn A, and P Raczelowski. 2002. An overview of toxicant identification in sediments and dredged materials. *Marine Pollution Bulletin* 44: 286-293.
- Knight JT. and WT Waller. 1987. Incorporating *Daphnia magna* into the seven-day *Ceriodaphnia* effluent toxicity test method. *Environmental Toxicology and Chemistry*. 6:635-645.
- Knight JT and WT Waller. 1992. Influence of the addition of Cerophyl on the *Selenastrum capricornutum* diet of the cladoceran *Ceriodaphnia dubia*. *Environmental Toxicology and Chemistry* 11:521-534.
- Kszos LA, Stewart AJ and PA Taylor. 1992. An evaluation of nickel toxicity to *Ceriodaphnia dubia* and *Daphnia magna* in a contaminated stream and in laboratory tests. *Environmental Toxicology and Chemistry* 11: 1001-1012.
- Naddy RB, La Point TW and SJ Klaine. 1995. Toxicity of arsenic, molybdenum and selenium combinations to *Ceriodaphnia dubia*. *Environmental Toxicology and Chemistry* 14:
 329-

336.

Oris JT, Winner RW, and MV Moore. 1991. A four-day survival and reproduction toxicity test

for Ceriodaphnia dubia. Environmental Toxicology and Chemistry 10:217-224.

- Playle RC, Dixon DG and K Burnison. 1993. Copper and cadmium binding to fish gills: modification by dissolved organic carbon and synthetic ligands. *Canadian Journal of Fisheries and Aquatic Sciences* 50: 2667-2677.
- Suedel BC; Rodgers Jr. JH and PA Clifford. 1993. Bioavailability of fluoranthene in freshwater sediment toxicity tests. *Environmental Toxicology and Chemistry* 12: 155-165.
- Suedel BC, Deaver E and JH Rodgers Jr. 1996. Experimental factors that may affect toxicity of aqueous and sediment-bound copper to freshwater organisms. *Archives of Environmental Contamination and Toxicology* 30: 40-46.
- Tipping E, Hurley M. 1992. A unifying model of cation binding by humic substances. *Geochimica Cosmochimia Acta* 56: 3627-3641.
- U.S. Environmental Protection Agency. 1991. <u>Sediment Toxicity Identification Evaluation:</u> <u>Phase I (Characterization), Phase II (Identification) and Phase III (Confirmation)</u> <u>Modifications of Effluent Procedures</u>, Draft. EPA/600/6-91/007. U.S. Environmental Protection Agency, Office of Research and Development, National Effluent Toxicity Assessment Center, Duluth, MN.
- U.S. Environmental Protection Agency. 1991. <u>Methods for Aquatic Toxicity Identification</u> <u>Evaluations: Phase I, Toxicity Characterization Procedures</u>. EPA/600/6-91/003. U.S. Environmental Protection Agency, Office of Research and Development, Duluth, MN.
- U.S. Environmental Protection Agency. 1991. <u>Methods for Measuring the Acute Toxicity of</u> <u>Effluents and Receiving Waters to Freshwater and Marine Organisms</u>, 4th Edition. EPA/600/4-90/027. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring Systems Laboratory, Cincinnati, OH.
- U.S. Environmental Protection Agency. 1993. <u>Methods for Aquatic Toxicity Identification</u> <u>Evaluations: Phase II, Toxicity Identification Procedures for Samples Exhibiting Acute</u> <u>and Chronic Toxicity</u>. EPA/600/R-92/080. U.S. Environmental Protection Agency, Office of Research and Development, Duluth, MN.
- U.S. Environmental Protection Agency. 1994. <u>Methods for Measuring the Toxicity and</u> <u>Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates</u>. EPA/600/R-94/024. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC.
- U.S. Environmental Protection Agency. 1994. <u>Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms</u>, 3rd Edition. EPA/600/4-91/002. Environmental Monitoring Systems Laboratory, Cincinnati, OH.

U.S. Environmental Protection Agency. 1995. <u>Emergent Technology Report: Demonstration</u> of

<u>Ambersorb 563 Adsorbent Technology</u>. EPA/540/R-95/516. U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Laboratory, Cincinnati, OH.

West CW, Kosian PA, Mount DR, Makynen EA, Pasha MS, Sibley PK, Ankley GT. 2001. Amendment of sediments with a carbonaceous resin reduces bioavailability of polyaromatic hydrocarbons. *Environmental Toxicology and Chemistry* 20: 1104-1111.

Appendix I. Sediment porewater TIE tiered procedures.

A. Pore Water Testing

Sample preparation

Centrifuge @ 7,500 to 10,000 xG for 30 min under refrigeration (4°C); decant pore water; no filtration.

Tiered Phase 1

Tier I: Initial Test

Initial test to confirm and define toxicity of pore water Treatment: 0, 6.25, 12.5, 25, 50, 100% sample Organism: *C. dubia* Duration: up to 7 days

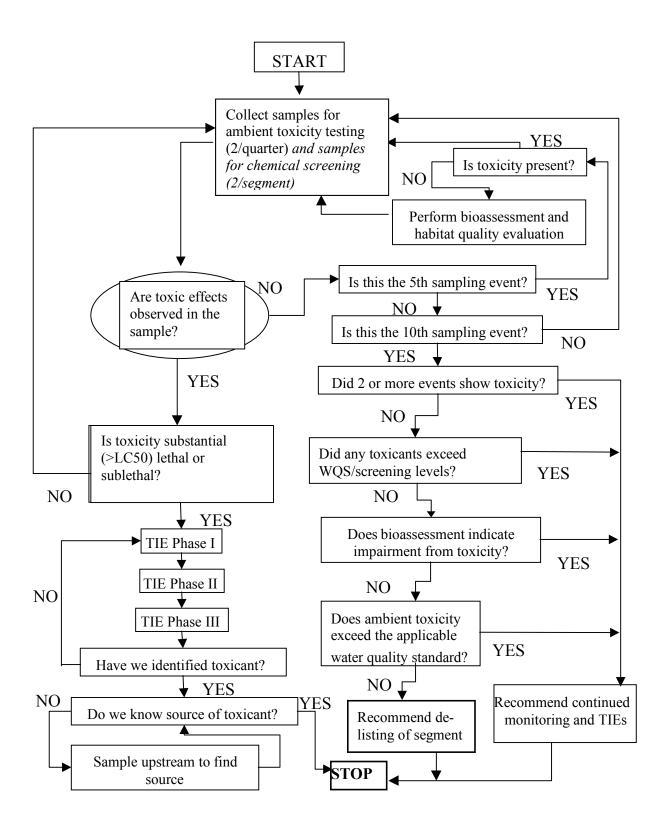
Tier II:

Standard Procedures:

Baseline toxicity Treatment w/ EDTA (2 concentration levels) to chelate metals Treatment w/ sodium thiosulfate (2 concentration levels) Filtration with glass fiber filter (GFF), and post treatment analysis. C₁₈-Solid Phase Extraction following Filtration to remove organics, and post treatment analysis.

Tier III:

Additional Procedures:


SIR-300 cationic resin for cationic metal chelation and post-treatment metals analysis SIR-900 resin for removal of arsenic; post-treatment chemical analysis Ambersorb 563 for organic removal without metal filtration and post-treatment metals analysis

B. Whole Sediment Testing

Whole-sediment toxicity reduction procedures:

SIR-300 for cationic metal removal SIR-900 for arsenic removal Ambersorb 563 to remove organics Coconut charcoal to absorb non-polar organics

Figure 1: Conceptual Toxicity Strategy flow diagram

APPENDIX D CHEMICAL TESTS LAB REPORTS AND DATA SUMMARY

		Otation	D 40500	Station ID						
		Station I	D 13560	13208						
					TSWQS*					
					Aquatic Life-					
		5/23/01	7/17/01	2/26/02	Chronic/Human					
	PARAMETER	RESULT	RESULT	RESULT	Health	UNITS				
lons	Chloride	130	118	126	200	mg/L				
	Sulfate	204	176	174	300	mg/L				
Total										
Suspended	Suspended Solids (Residue,									
Solids	Non-Filterable)	ND	ND	ND	1000	mg/L				
						ĕ				
Volatiles	1,1,1-Trichloroethane	ND	ND	ND	NA/200	μg/L				
	1,1,2,2-Tetrachloroethane	ND	ND	ND		μg/L				
	1,1,2-Trichloroethane	ND	ND	ND		μg/L				
	1,1-Dichloroethane	ND	ND	ND		μg/L				
	1,1-Dichloroethene	ND	ND	ND	NA/1.63	µg/L				
	1,2-Dibromoethane	ND	ND	ND	NA/0.014	µg/L				
	1,2-Dichloroethane	ND	ND	ND	NA/5	µg/L				
	1,2-Dichloropropane	ND	ND	ND		µg/L				
	2-Chloroethylvinylether	ND	ND	ND		µg/L				
	Benzene	ND	ND	ND	NA/5	µg/L				
	Bromodichloromethane	ND	ND	ND	NA/100**	µg/L				
	Bromoform	ND	ND	ND	NA/100**	µg/L				
	Bromomethane	ND	ND	ND		µg/L				
	Carbon disulfide	ND	ND	ND		µg/L				
	Carbon tetrachloride	ND	ND	ND	NA/3.76	µg/L				
	Chlorobenzene	ND	ND	ND	NA/776	µg/L				
	Chloroethane	ND	ND	ND		µg/L				
	Chloroform	ND	ND	ND	NA/100**	µg/L				
	Chloromethane	ND	ND	ND		µg/L				
	cis-1,2-Dichloroethene	ND	ND	ND		µg/L				
	cis-1,3-Dichloropropene	ND	ND	ND		μg/L				
	Dibromochloromethane	ND	ND	ND	NA/9.2	μg/L				
	Ethylbenzene	ND	ND	ND	-	μg/L				
1	Hexachlorobutadiene	ND	ND	ND	NA/2.99	μg/L				
	m,p-Xylene	ND	ND	ND		μg/L				
1	Methyl tert-butyl ether	ND	ND	ND		μg/L				
	Methylene chloride	ND	ND	ND		μg/L				
	o-Xylene	ND	ND	ND		μg/L				
	Tetrachloroethene	ND	ND	ND		μg/L				
1	Toluene	ND	ND	ND		μg/L				
	trans-1,2-Dichloroethene	ND	ND	ND		μg/L				
	trans-1,3-Dichloropropene	ND	ND	ND		μg/L				
	Trichloroethene	ND	ND	ND		μg/L				
777	Vinyl chloride	ND	ND	ND		μg/L				
111	viriyi chionue				I	µy/∟				

		<u> </u>			
				TSWQS*	
				Aquatic Life-	
	6/19/01	7/17/01	2/26/02	Chronic/Human	
PARAMETER	RESULT	RESULT	RESULT	Health	UNITS
Semi-Vol. 1,2,4-Trichlorobenzene	ND	ND	ND		µg/L
1,2-Dichlorobenzene	ND	ND	ND		µg/L
1,3-Dichlorobenzene	ND	ND	ND		µg/L
1,4-Dichlorobenzene	ND	ND	ND		µg/L
2,4,5-Trichlorophenol	ND	ND	ND	64/NA	µg/L
2,4,6-Trichlorophenol	ND	ND	ND		µg/L
2,4-Dichlorophenol	ND	ND	ND		μg/L
2,4-Dimethylphenol	ND	ND	ND		µg/L
2,4-Dinitrophenol	ND	ND	ND		μg/L
2,4-Dinitrotoluene	ND	ND	ND		μg/L
2,6-Dinitrotoluene	ND	ND	ND		μg/L
2-Chloronaphthalene	ND	ND	ND		μg/L
2-Chlorophenol	ND	ND	ND		µg/L
2-Methylnaphthalene	ND	ND	ND		µg/L
2-Methylphenol	ND	ND	ND		µg/L
2-Nitrophenol	ND	ND	ND		µg/L
3,3'-Dichlorobenzidine	ND	ND	ND		µg/L
4,6-Dinitro-2-methylphenol	ND	ND	ND		μg/L
4-Bromophenyl phenyl ether	ND	ND	ND		μg/L
4-Chloro-3-methylphenol	ND	ND	ND		µg/L
4-Chlorophenyl phenyl ether	ND	ND	ND		μg/L
4-Methylphenol	ND	ND	ND		μg/L
4-Nitrophenol	ND	ND	ND		μg/L
Acenaphthene	ND	ND	ND		μg/L
Acenaphthylene	ND	ND	ND		µg/L
Anthracene	ND	ND	ND		µg/L
Benzo[a]anthracene	ND	ND	ND	NA/0.099	μg/L
Benzo[a]pyrene	ND	ND	ND	NA/0.099	µg/L
Benzo[b]fluoranthene	ND	ND	ND		μg/L
Benzo[g,h,i]perylene	ND	ND	ND		µg/L
Benzo[k]fluoranthene	ND	ND	ND		μg/L
Bis(2-chloroethoxy)methane	ND	ND	ND		µg/L
Bis(2-chloroethyl)ether	ND	ND	ND		μg/L
Bis(2-chloroisopropyl)ether	ND	ND	ND		µg/L
Bis(2-ethylhexyl)phthalate	ND	ND	ND		μg/L
Butyl benzyl phthalate	ND	ND	ND		μg/L
Chrysene	ND	ND	ND	NA/0.417	μg/L
Di-n-butyl phthalate	ND	ND	ND		μg/L
Di-n-octyl phthalate	ND	ND	ND		μg/L
Dibenz[a,h]anthracene	ND	ND	ND		μg/L
Diethyl phthalate	ND	ND	ND		μg/L
Dimethyl phthalate	ND	ND	ND		μg/L
Fluoranthene	ND	ND	ND		μg/L
Fluorene	ND	ND	ND		μg/L
Hexachlorobenzene	ND	ND	ND	NA/0.0194	μg/L
Hexachlorocyclopentadiene	ND	ND	ND	11/10.0194	μg/L
Hexachloroethane	ND	ND	ND	NA/84.2	μg/L
Indeno[1,2,3-cd]pyrene	ND	ND	ND	11/1/04.2	μg/L
Inderio[1,2,3-cd]pyrene Isophorone	ND	ND	ND		μg/L
N-Nitrosodi-n-propylamine	ND	ND	ND		
					μg/L
N-Nitrosodiphenylamine	ND	ND	ND		μg/L
Naphthalene	ND	ND	ND	NIA (07 0	μg/L
Nitrobenzene	ND	ND	ND	NA/37.3	μg/L
Pentachlorophenol	ND	ND	ND	11.6/1.0	μg/L
Phenanthrene	ND	ND	ND	30/NA	µg/L
Phenol	ND	ND	ND		μg/L
Pyrene	ND	ND	ND	1	μg/L

August 2002						
		5/23/01	7/17/01	2/26/02	TSWQS* Aquatic Life- Chronic/Human	
Trianzines	PARAMETER Atrazine Cyanazine Metolachlor Simazine	RESULT ND ND ND ND	RESULT ND ND ND ND	RESULT ND ND ND ND	Health	UNITS μg/L μg/L μg/L μg/L
Pest/PCBs	a-BHC Alachlor Aldrin b-BHC Chlordane d-BHC DDD DDE DDT Dicofol Dieldrin Endosulfan sulfate Endrin g-BHC (Lindane) Heptachlor Heptachlor Heptachlor Mirex PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Toxaphene	ND ND ND ND ND ND ND 0.15 J ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	NA/0.00408 0.004/0.0210 NA/0.0103 NA/0.0073 0.001/0.0073 19.8/0.215 0.002/0.00171 0.056/NA 0.002/1.27 0.08/0.2 0.004/0.0026 NA/0.159 0.03/2.21 0.001/NA 0.014/0.0013 0.014/0.0013 0.014/0.0013 0.014/0.0013 0.014/0.0013 0.014/0.0013 0.014/0.0013 0.014/0.0013 0.014/0.0013	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Organo- phosphorus Compounds	Chloropyrifos Demeton (Total) Diazinon Guthion Malathion Parathion	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	0.041/NA 0.1/NA 0.01/NA 0.01/NA 0.013/NA	μg/L μg/L μg/L μg/L μg/L μg/L
Chlorinated Herbicides	2,4,5-T 2,4,5-TP (Silvex) 2,4-D	ND ND ND	ND ND ND	ND ND ND	70/NA	μg/L μg/L μg/L
Carbamates	Carbaryl Diuron	ND ND	ND ND	ND ND	70/NA	μg/L μg/L
Inorganics	Hardness Cyanide, Total	272 11.1	270 ND	NA ND	10.7/200	mg/L μg/L
Total Metals	Mercury Selenium	0.00104 ND	0.00085 0.533	0.000796 0.563	1.3/0.0122 5/50	μg/L μg/L

	PARAMETER	5/23/01 RESULT	7/17/01 RESULT	2/26/02 RESULT	TSWQS* Aquatic Life- Chronic/Human Health	UNITS
Dissolved	Arsenic	1.56	1.93	0.95	190/50**	µg/L
Trace Metals	Silver Aluminum Cadmium Chromium Copper Nickel Lead Zinc	ND UJ ND ND 0.87 ND ND 0.93	ND UJ ND UJ ND 1.46 J 0.91 ND 1.18		0.8/NA 991/NA 2.26/5 10.6/100 28.89/NA 366.5/NA 9.01/4.98 244/NA	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Dissolved Major Ions	Calcium Iron Potassium Magnesium Sodium	71.6 ND 4.51 16.8 104	77.9 ND 4.45 20.1 106	69.4 ND 3.75 20.4 96		mg/L mg/L mg/L mg/L mg/L

Notes:

J- result is estimated

UJ - estimated Non-Detected

ND- result was Not Detected

mg/L= milligrams per liter

ug/L = microgram per liter *Texas Surface Water Quality Standards (8/17/2000) for Aquatic Life (Chronic) and Human Health ** All metals TSWQS based on a hardness of 272 mg/L

APPENDIX E DATA QUALITY OBJECTIVES AND VALIDATION REPORTS

Appendix E

DATA VERIFICATION REPORT

for aqueous samples collected from the

RIO GRANDE SEGMENT 2304 TMDL SITE

May 23, 2001 and June 19, 2001

Data Verification by: Sandra Dover

The following data verification summary report covers environmental aqueous samples and associated field quality control (QC) samples collected from the Rio Grande Segment 2304, Station 13560, on June 13, 2001.

A Chemist with Parsons has reviewed the data submitted by DHL Analytical, APPL, Inc., Albion Environmental and The University of North Texas.

The analysis for semi-volatiles was not performed on the sample collected during the initial sampling event in May due to a shipping error. This sample was re-sampled on June 19, 2001 for semi-volatiles only. All other analyses were performed with the sample collected on May 23, 2001.

The samples in this event were analyzed for volatiles, semivolatiles, pesticides (including triazines, PCBs, organophosphorus compounds, herbicides and carbamates), hardness, cyanide, total metals (mercury and selenium), dissolved metals (arsenic), dissolved trace metals (silver, aluminum, cadmium, chromium, copper, nickel, lead and zinc), dissolved major ions (calcium, iron, potassium, magnesium and sodium), anions (chloride and sulfate) and total suspended solids (TSS).

There were no field quality control samples collected at this site. There were no trip blanks analyzed for volatiles and no field blanks or equipment blanks were collected in association with the sediment samples in this DVR. Therefore, the possibility of contamination during sampling or handling could not be evaluated for these samples.

All samples were collected by Parsons and were analyzed by the various laboratories following procedures outlined in the Assessment of the Presence and Causes of Ambient Toxicity Quality Assurance Project Plan (QAPP).

REVIEW CRITERIA

All data submitted by the various laboratories has been reviewed. Field and laboratory QC sample information was examined, including: laboratory blanks, laboratory control samples (LCS), laboratory duplicates, matrix spikes and matrix spike duplicate (MS and MSD) samples, certified reference material (CRM) samples, surrogate spikes and Chain-of-Custody (COC) forms. The findings presented in this report are based on the reviewed information and whether the requirements specified in the project QAPP were met.

VOLATILES

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on May 23, 2001 and was analyzed for volatile organic compounds (VOCs). The VOC analyses were performed using USEPA SW846 Method 8260B.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the MS/MSD samples, LCS samples and surrogate spikes. Another clients sample was used for the MS/MSD sample for the batch QC. The results for the MS/MSD will be discussed although not used to qualify the data for the sample in this group. It should be noted that only a small subset of analytes was reported for the MS/MSD.

The percent recoveries for the LCS were all within acceptance criteria.

The percent recoveries for the MS/MSD were within acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries.

All MS/MSD RPDs were within laboratory specified acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was analyzed in association with the samples. The blank was free of target analytes above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All volatile results for the samples in this report were considered usable. The completeness for the VOC portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

SEMIVOLATILES

General

This sample group consisted of three (3) samples, including one (1) environmental aqueous sample and one pair of MS/MSD samples, randomly selected by the laboratory. The samples were collected on June 19, 2001 and were analyzed for semi-volatile organic compounds (SVOCs). The SVOC analyses were performed using USEPA SW846 Method 8270C.

DHL Analytical received a cooler with the sample collected for semi-volatiles analysis at a temperature of 21.4°C. The results are considered usable for the purposes of this study.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the MS/MSD samples, LCS samples, and the surrogate spikes. Sample 13560 was randomly selected by the laboratory to be used for the MS/MSD batch QC for this data set. It should be noted that only a small subset of analytes was reported for the MS/MSD.

All MS/MSD and surrogate %Rs were within acceptance criteria.

All LCS %Rs were within acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries.

All MS/MSD RPDs were within laboratory specified acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was analyzed in association with the samples. The blank was free of target analytes above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All semivolatile results for the samples in this report were considered usable. The completeness for the SVOC portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

TRIAZINES

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on May 24, 2001, and was analyzed for triazine. The triazine compounds, atrazine, cyanazine, metolachlor and simazine, were analyzed using USEPA SW846 Method 8141A.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the LCS sample and surrogate spikes. There was no MS/MSD sample analyzed for this data set.

The LCS percent recoveries were within acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

There was no precision data available for evaluation.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was run in association with the triazine analyses. The blank was free of any triazines above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All triazine results for the sample in this report were considered usable. The completeness for the triazine portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

PESTICIDES / PCBS

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on May 23, 2001, and was analyzed for pesticides and PCBs. The pesticide/PCB analyses were performed using USEPA SW846 Method 8081A/8082.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the LCS sample and surrogate spikes. There was no sample analyzed for the MS/MSD in this data set.

The LCS percent recoveries were within acceptance criteria except for the following:

Sample	Analyte	LCS %R	Lab Tolerance	
LCS	Dicofol	2076	50-150	

Dicofol was recovered high in the LCS by laboratory acceptance criteria. Although the QAPP did not provide accuracy acceptance criteria, a "J" flag was applied due to the unusually high %R for Dicofol.

All surrogate spike recoveries met laboratory specified tolerance in the samples. All surrogates met laboratory specified tolerance except for the following:

Sample	Surrogate	%R	Lab Tolerance
MB	TCmX	14	25-144

No flags were applied to the data due to this non-compliant surrogate since one of the two surrogates was within acceptance criteria. Laboratory tolerance was used to evaluate the surrogates since the QAPP did not provide accuracy acceptance criteria.

Precision

There was no precision data available for evaluation.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was run in association with the pesticide/PCB analyses. The blank was free of any pesticides or PCBs of concern above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All pesticide/PCB results for the samples in this report were considered usable. The completeness for the pesticide/PCB portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

ORGANOPHOSPHORUS COMPOUNDS

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on May 23, 2001, and was analyzed for organophosphorus compounds. The organophosphorus compounds, Chloropyrifos, Demeton, Diazinon, Guthion, Malathion and Parathion were analyzed using USEPA SW846 Method 8141A.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the LCS sample and surrogate spikes. There was no MS/MSD analyzed for this data set.

The LCS percent recoveries were within acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

There was no precision data available for evaluation.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was run in association with the organophosphorus compound analyses. The blank was free of any organophosphorus compounds above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All organophosphorus compound results for the sample in this report were considered usable. The completeness for the organophosphorus compound portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

HERBICIDES

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on May 23, 2001, and was analyzed for herbicides. Herbicides, 2,4,5-T, 2,4,5-TP (Silvex) and 2,4-D, were analyzed using USEPA SW846 Method 8151A.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the LCS sample and the surrogate spike. There was no MS/MSD analyzed for this data set.

The LCS percent recoveries were within acceptance criteria.

The surrogate spike recovery met laboratory specified tolerance in the samples, QC and method blanks.

Precision

There was no precision data available for evaluation.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

The method blank was run in association with the herbicide analyses. The blank was free of any herbicides above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All herbicide results for the samples in this report were considered usable. The completeness for the herbicides portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

CARBAMATES

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on May 23, 2001, and was analyzed for carbamates. The carbamate compounds, carbaryl and diuron were analyzed using USEPA SW846 Method 8321A.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the LCS sample and surrogate spikes. There was no MS/MSD analyzed for this data set.

The LCS percent recoveries were within acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

There was no precision data available for evaluation.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was run in association with the carbamate analyses. The blank was free of any carbamates of concern above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All carbamate results for the samples in this report were considered usable. The completeness for the carbamates portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

HARDNESS

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on May 23, 2001 and was analyzed for Hardness using EPA Method 130.2.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS sample.

The LCS %R met acceptance criteria.

Precision

There was no precision data available for evaluation.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of Hardness components above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All Hardness results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

CYANIDE

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on May 23, 2001 and was analyzed for Cyanide using EPA Method 335.2.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS sample.

The LCS %R met acceptance criteria.

Precision

There was no precision data available for evaluation.

Representativeness

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of cyanide above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All cyanide results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

METALS

Total Mercury

General

This sample group consisted of three (3) samples, including one environmental aqueous sample and one pair of MS/MSD samples, randomly selected by the laboratory. The samples were collected on May 23, 2001 and were analyzed for total mercury. The samples were collected by EPA clean sampling method 1669. The mercury analysis was performed using EPA Method 1631b.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS, MS/MSD samples and certified reference material (CRM) samples. Sample 13560, was selected by the laboratory, as the MS/MSD for this data set.

The LCS %R met acceptance criteria.

All MS/MSD %Rs met acceptance criteria.

All CRM %Rs met laboratory specified acceptance criteria.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries.

The MS/MSD RPD was within laboratory specified acceptance criteria.

Representativeness

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP with the exceptions noted above.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of total mercury above the MAL. As required by EPA clean sampling method 1669, field quality assurance and quality control samples were collected and analyzed to confirm that the sampling was conducted consistently and without contamination. Two equipment blanks and one field blank were analyzed and found to be free of total mercury above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

Dissolved Arsenic

General

This sample group consisted of four (4) samples, including one environmental aqueous sample, one laboratory duplicate and one pair of MS/MSD samples, randomly selected by the laboratory. The samples were collected on May 23, 2001 and were analyzed for dissolved arsenic. The samples were collected by EPA clean sampling method 1669. The arsenic analyses were performed using EPA Method 1632.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS, MS/MSD samples and certified reference material (CRM) samples. Sample 13560, was selected by the laboratory, as the MS/MSD for this data set.

The LCS %R met acceptance criteria.

All MS/MSD %Rs met acceptance criteria.

All CRM %Rs met laboratory specified acceptance criteria.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries and the laboratory duplicate. Sample 13560, was selected by the laboratory, as a lab duplicate sample.

The MS/MSD RPD was within laboratory specified acceptance criteria.

The laboratory duplicate RPD was within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP with the exceptions noted above.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of dissolved arsenic above the MAL. As required by EPA clean sampling method 1669, field quality assurance and quality control samples were collected and analyzed to confirm that the sampling was conducted consistently and without contamination. Two equipment blanks and one field blank were analyzed and found to be free of total mercury above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

Total Selenium

General

This sample group consisted of four (4) samples, including one environmental aqueous sample, one laboratory duplicate sample and one pair of MS/MSD samples, randomly selected by the laboratory. The samples were collected on May 23, 2001 and were analyzed for total selenium. The samples were collected by EPA clean sampling method 1669. The selenium analysis was performed using EPA Method 1638.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS, MS/MSD samples and certified reference material (CRM) samples. Sample 13560, was selected by the laboratory, as the MS/MSD for this data set.

The LCS %R met acceptance criteria.

All MS/MSD %Rs met acceptance criteria.

All CRM %Rs met laboratory specified acceptance criteria.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries and the laboratory duplicate sample. Sample 13560, was selected by the laboratory, as a lab duplicate sample.

The MS/MSD RPD was within laboratory specified acceptance criteria.

The laboratory duplicate RPD was within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP with the exceptions noted above.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of trace metals above the MAL. As required by EPA clean sampling method 1669, field quality assurance and quality control samples were collected and analyzed to confirm that the sampling was conducted consistently and without contamination. Two equipment blanks and one field blank were analyzed and found to be free of trace metals above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

Trace Metals

General

This sample group consisted of four (4) samples, including one environmental aqueous sample, one laboratory duplicate sample and one pair of MS/MSD samples, randomly selected by the laboratory. The samples were collected on May 23, 2001 and were analyzed for trace metals. The samples were collected by EPA clean sampling method 1669. Trace metals (silver, aluminum, cadmium, chromium, copper, nickel, lead and zinc) analysis was performed using EPA Method 1638.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS, MS/MSD samples and certified reference material (CRM) samples. Sample 13560, was selected by the laboratory, as the MS/MSD for this data set.

All LCS %Rs met acceptance criteria.

All MS/MSD %Rs met acceptance criteria except for the following:

Analyte	MS %R	MSD %R	Acceptance Criteria
Silver	44	44	74-119

The MS and MSD recoveries for silver were significantly below the acceptance criteria listed in the QAPP, therefore the sample result for silver may be biased low. The non-detected concentration for silver in the sample was considered estimated and flagged "UJ".

All CRM %Rs met laboratory specified acceptance criteria.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries.

The MS/MSD RPD was within laboratory specified acceptance criteria.

The laboratory duplicate RPD was within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP with the exceptions noted above.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of trace metals above the MAL. As required by EPA clean sampling method 1669, field quality assurance and quality control samples were collected and analyzed to confirm that the sampling was conducted consistently and without contamination. Two equipment blanks and one field blank were analyzed and found to be free of trace metals above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

Major Ions

General

This sample group consisted of four (4) samples, including one environmental aqueous sample, one laboratory duplicate and one pair of MS/MSD samples, randomly selected by the laboratory. The samples were collected on May 23, 2001 and were analyzed for major ions. The samples were collected by EPA clean sampling method 1669. The major ions (calcium, iron, potassium, magnesium and sodium) analysis was performed using EPA Method 200.7.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS, MS/MSD samples and certified reference material (CRM) samples. Sample 13560, was selected by the laboratory, as the MS/MSD for this data set.

All LCS %Rs met acceptance criteria.

All MS/MSD %Rs met acceptance criteria.

All CRM %Rs met laboratory specified acceptance criteria.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries.

The MS/MSD RPD was within laboratory specified acceptance criteria.

The laboratory duplicate RPD was within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP with the exceptions noted above.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of major ions above the MAL. As required by EPA clean sampling method 1669, field quality assurance and quality control samples were collected and analyzed to confirm that the sampling was conducted consistently and without contamination. The two equipment blanks and field blank were analyzed and found to be free of major ions above the MAL with the exception of potassium. Potassium was found in the two equipment blanks and the field blank, however this situation has no affect on the data quality because the lowest sample has potassium concentration more than 20 times the highest blank.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

ANIONS (CHLORIDE AND SULFATE)

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on May 23, 2001 and was analyzed for chloride and sulfate using USEPA SW846 Method 9056.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS and LCSD samples.

All LCS and LSCD %Rs met acceptance criteria.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the LCS/LCSD recoveries.

LCS/LCSD RPDs were within laboratory specified acceptance criteria for chloride and sulfate.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of sulfate and chloride above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

TOTAL SUSPENDED SOLIDS (TSS)

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on May 23, 2001 and was analyzed for TSS using EPA Method 160.2.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS sample.

The LCS %R met acceptance criteria.

Precision

There was no precision data available for evaluation.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of total suspended solids (TSS) above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

DATA VERIFICATION REPORT

for aqueous samples collected from the

RIO GRANDE SEGMENT 2304 TMDL SITE

July 17, 2001

Data Verification by: Sandra de las Fuentes

The following data verification summary report covers environmental aqueous samples and associated field quality control (QC) samples collected from the Rio Grande Segment 2304, Station 13560, on July 17, 2001.

A Chemist with Parsons has reviewed the data submitted by DHL Analytical, APPL, Inc., Albion Environmental and The University of North Texas.

The samples in this event were analyzed for volatiles, semivolatiles, pesticides (including triazines, PCBs, organophosphorus compounds, herbicides and carbamates), hardness, cyanide, total metals (mercury and selenium), dissolved metals (arsenic), dissolved trace metals (silver, aluminum, cadmium, chromium, copper, nickel, lead and zinc), dissolved major ions (calcium, iron, potassium, magnesium and sodium), anions (chloride and sulfate) and total suspended solids (TSS).

There were no field quality control samples collected at this site. There were no trip blanks analyzed for volatiles and no field blanks or equipment blanks were collected in association with the sediment samples in this DVR. Therefore, the possibility of contamination during sampling or handling could not be evaluated for these samples.

All samples were collected by Parsons and were analyzed by the various laboratories following procedures outlined in the Assessment of the Presence and Causes of Ambient Toxicity Quality Assurance Project Plan (QAPP).

REVIEW CRITERIA

All data submitted by the various laboratories has been reviewed. Field and laboratory QC sample information was examined, including: laboratory blanks, laboratory control samples (LCS), laboratory duplicates, matrix spikes and matrix spike duplicate (MS and MSD) samples, certified reference material (CRM) samples, surrogate spikes and Chain-of-Custody (COC) forms. The findings presented in this report are based on the reviewed information and whether the requirements specified in the project QAPP were met.

VOLATILES

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on July 17, 2001 and was analyzed for volatile organic compounds (VOCs). The VOC analyses were performed using USEPA SW846 Method 8260B.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the MS/MSD samples, LCS samples and surrogate spikes. Another clients sample was used for the MS/MSD sample for the batch QC. The results for the MS/MSD will be discussed although not used to qualify the data for the sample in this group. It should be noted that only a small subset of analytes was reported for the MS/MSD.

The percent recoveries for the LCS were all within QAPP acceptance criteria.

The percent recoveries for the MS/MSD were within acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries.

All MS/MSD RPDs were within laboratory specified acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was analyzed in association with the samples. The blank was free of target analytes above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All volatile results for the samples in this report were considered usable. The completeness for the VOC portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

SEMIVOLATILES

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on July 17, 2001 and was analyzed for semi-volatile organic compounds (SVOCs). The SVOC analyses were performed using USEPA SW846 Method 8270C.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the MS/MSD samples, LCS samples, and the surrogate spikes. Another clients sample was used for the MS/MSD sample for the batch QC. The results for the MS/MSD will be discussed although not used to qualify the data for the sample in this group. It should be noted that only a small subset of analytes was reported for the MS/MSD.

All MS/MSD %Rs were within acceptance criteria except for the following:

Compound	MS %R	MSD %R	QC Tolerance
3,3'-Dichlorobenzidine	0.95	4.75	29-175%

No action was taken since the sample spiked was taken from another client. The recovery for this compound was within acceptance criteria in the LCS.

All LCS %Rs were within acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries.

All MS/MSD RPDs were within laboratory specified acceptance criteria except for the following:

Compound	MS Conc.	MSD Conc.	QC
	(ug/L)	(ug/L)	Tolerance
3,3'-Dichlorobenzidine	0.38	1.9	30%

No action was taken since the sample spiked was taken from another client.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

• Comparing actual analytical procedures to those described in the QAPP;

- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was analyzed in association with the samples. The blank was free of target analytes above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All semivolatile results for the samples in this report were considered usable. The completeness for the SVOC portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

TRIAZINES

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on July 17, 2001, and was analyzed for triazine. The triazine compounds, atrazine, cyanazine, metolachlor and simazine, were analyzed using USEPA SW846 Method 8141A.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the LCS sample and surrogate spikes. A sample from another TMDL site was selected by the laboratory as the MS/MSD for this QC batch. The results for the MS/MSD will be discussed although not used to qualify the data for the sample in this group.

All MS/MSD %Rs were within acceptance criteria.

All LCS %Rs were within acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries.

All MS/MSD RPDs were within acceptance criteria.

Representativeness

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and

• Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was run in association with the triazine analyses. The blank was free of any triazines above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All triazine results for the sample in this report were considered usable. The completeness for the triazine portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

PESTICIDES / PCBS

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on July 17, 2001, and was analyzed for pesticides and PCBs. The pesticide/PCB analyses were performed using USEPA SW846 Method 8081A/8082.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the LCS sample and surrogate spikes. A sample from another TMDL site was selected by the laboratory as the MS/MSD for this QC batch. The results for the MS/MSD will be discussed although not used to qualify the data for the sample in this group.

All MS/MSD %Rs were within acceptance criteria.

The LCS percent recoveries were within acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries.

All MS/MSD RPDs were within acceptance criteria.

Representativeness

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was run in association with the pesticide/PCB analyses. The blank was free of any pesticides or PCBs of concern above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All pesticide/PCB results for the samples in this report were considered usable. The completeness for the pesticide/PCB portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

ORGANOPHOSPHORUS COMPOUNDS

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on July 17, 2001, and was analyzed for organophosphorus compounds. The organophosphorus compounds, Chloropyrifos, Demeton, Diazinon, Guthion, Malathion and Parathion were analyzed using USEPA SW846 Method 8141A.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the LCS sample and surrogate spikes. A sample from another TMDL site was selected by the laboratory as the MS/MSD for this QC batch. The results for the MS/MSD will be discussed although not used to qualify the data for the sample in this group.

All MS/MSD %Rs were within acceptance criteria.

The LCS percent recoveries were within acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries.

All MS/MSD RPDs were within acceptance criteria.

Representativeness

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was run in association with the organophosphorus compound analyses. The blank was free of any organophosphorus compounds above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All organophosphorus compound results for the sample in this report were considered usable. The completeness for the organophosphorus compound portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

HERBICIDES

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on July 17, 2001, and was analyzed for herbicides. Herbicides, 2,4,5-T, 2,4,5-TP (Silvex) and 2,4-D, were analyzed using USEPA SW846 Method 8151A.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the LCS sample and the surrogate spike. A sample from another TMDL site was selected by the laboratory as the MS/MSD for this QC batch. The results for the MS/MSD will be discussed although not used to qualify the data for the sample in this group.

All MS/MSD %Rs were within acceptance criteria.

The LCS percent recoveries were within acceptance criteria except for the following:

Analyte	LCS %R	QC Criteria
2,4,5-T	101	50-100

No action was taken on the sample in this QC batch for 2,4,5-T since the recovery was only slightly above the QC acceptance criteria. There was no 2,4,5-T detected in the client sample.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries.

All MS/MSD RPDs were within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

The method blank was run in association with the herbicide analyses. The blank was free of any herbicides above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All herbicide results for the samples in this report were considered usable. The completeness for the herbicides portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

CARBAMATES

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on July 17, 2001, and was analyzed for carbamates. The carbamate compounds, carbaryl and diuron were analyzed using USEPA SW846 Method 8321A.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the LCS sample and surrogate spikes. A sample from another TMDL site was selected by the laboratory as the MS/MSD for this QC batch. The results for the MS/MSD will be discussed although not used to qualify the data for the sample in this group.

The MS/MSD %Rs were outside of acceptance criteria as shown in the following:

Analyte	MS %R	MSD %R	QC Criteria
Carbaryl	18.5	19.1	40-131%
Diuron	40.9	38.8	57-133%

No action was taken since the sample spiked was taken from another client.

The LCS percent recoveries were within acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

There was no precision data available for evaluation.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was run in association with the carbamate analyses. The blank was free of any carbamates of concern above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All carbamate results for the samples in this report were considered usable. The completeness for the carbamates portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

HARDNESS

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on July 17, 2001 and was analyzed for Hardness using EPA Method 130.2.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS sample.

The LCS %R met acceptance criteria.

Precision

There was no precision data available for evaluation.

Representativeness

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of Hardness components above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All Hardness results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

CYANIDE

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on Jul 17, 2001 and was analyzed for Cyanide using EPA Method 335.2.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS sample.

The LCS %R met acceptance criteria.

Precision

There was no precision data available for evaluation.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of cyanide above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All cyanide results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

METALS

Total Mercury

General

This sample group consisted of four (4) samples, including one environmental aqueous sample, one field duplicate sample and one pair of MS/MSD samples. The samples were collected on July 17, 2001 and were analyzed for total mercury. The samples were collected by EPA clean sampling method 1669. The mercury analysis was performed using EPA Method 1631b.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS, MS/MSD samples and certified reference material (CRM) samples. Sample 13560, was selected by the laboratory, as the MS/MSD for this data set.

The LCS %R met acceptance criteria.

All MS/MSD %Rs met acceptance criteria.

All CRM %Rs met laboratory specified acceptance criteria.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries and the field duplicate samples.

The MS/MSD RPD was within laboratory specified acceptance criteria.

The field duplicate RPD was within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP with the exceptions noted above.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of total mercury above the MAL. As required by EPA clean sampling method 1669, field quality assurance and quality control samples were collected and analyzed to confirm that the sampling was conducted consistently and without contamination. There were no equipment blanks or field blanks collected at this TMDL site on July 17, 2001.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

Dissolved Arsenic

General

This sample group consisted of four (4) samples, including one environmental aqueous sample, one laboratory duplicate and one pair of MS/MSD samples, randomly selected by the laboratory. The samples were collected on July 17, 2001 and were analyzed for dissolved arsenic. The samples were collected by EPA clean sampling method 1669. The arsenic analyses were performed using EPA Method 1632.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS, MS/MSD samples and certified reference material (CRM) samples. Sample 13560, was selected by the laboratory, as the MS/MSD for this data set.

The LCS %R met acceptance criteria.

All MS/MSD %Rs met acceptance criteria.

All CRM %Rs met laboratory specified acceptance criteria.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries, and a field duplicate sample. Sample 13560 was collected and analyzed as the field duplicate sample for this data set.

The MS/MSD RPD was within laboratory specified acceptance criteria.

The field duplicate RPD was within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP with the exceptions noted above.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of dissolved arsenic above the MAL. As required by EPA clean sampling method 1669, field quality assurance and quality control samples were collected and analyzed to confirm that the sampling was conducted consistently and without contamination. There was one field blank were analyzed and found to be free of total mercury above the MAL. There were no equipment blanks collected from this TMDL site.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

Total Selenium

General

This sample group consisted of four (4) samples, including one environmental aqueous sample, one laboratory duplicate sample and one pair of MS/MSD samples, randomly selected by the laboratory. The samples were collected on July 18, 2001 and were analyzed for total selenium. The samples were collected by EPA clean sampling method 1669. The selenium analysis was performed using EPA Method 1632(mod).

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS, MS/MSD samples and certified reference material (CRM) samples. Sample 13560, was selected by the laboratory, as the MS/MSD for this data set.

The LCS %R met acceptance criteria.

All MS/MSD %Rs met acceptance criteria.

All CRM %Rs met laboratory specified acceptance criteria.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries and the laboratory duplicate sample. Sample 13560, was selected by the laboratory, as a lab duplicate sample.

The MS/MSD RPD was within laboratory specified acceptance criteria.

The laboratory duplicate RPD was within acceptance criteria.

Representativeness

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP with the exceptions noted above.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of trace metals above the MAL. As required by EPA clean sampling method 1669, field quality assurance and quality control samples were collected and analyzed to confirm that the sampling was conducted consistently and without contamination. There were no equipment blanks or field blanks collected from this TMDL site on July 17, 2001.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

Trace Metals

General

This sample group consisted of four (4) samples, including one environmental aqueous sample, one field duplicate sample and one pair of MS/MSD samples, randomly selected by the laboratory. The samples were collected on July 17, 2001 and were analyzed for trace metals. The samples were collected by EPA clean sampling method 1669. Trace metals (silver, cadmium, chromium, copper, nickel, lead and zinc) analysis was performed using EPA Method 1638.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS, MS/MSD samples and certified reference material (CRM) samples. Sample 13560, was selected by the laboratory, as the MS/MSD for this data set.

All LCS %Rs met acceptance criteria.

All MS/MSD %Rs met acceptance criteria.

All CRM %Rs met laboratory specified acceptance criteria.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries and the field duplicate sample.

The MS/MSD RPD was within laboratory specified acceptance criteria.

The field duplicate RPD was within acceptance criteria except for the following:

Analyte	10643	10643 Dup	%RPD	QAPP
	Conc.	Conc.		Tolerance
	(ug/L)	(ug/L)		

Copper	1.46	0.88	50	25%
--------	------	------	----	-----

Copper was flagged "J" in the sample and sample duplicate since the RPD was above acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP with the exceptions noted above.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of trace metals above the MAL. As required by EPA clean sampling method 1669, field quality assurance and quality control samples were collected and analyzed to confirm that the sampling was conducted consistently and without contamination. There were no equipment blanks or field blanks collected at this TMDL site on July 17, 2001.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

Major Ions

General

This sample group consisted of four (4) samples, including one environmental aqueous sample, one field duplicate and one pair of MS/MSD samples, randomly selected by the laboratory. The samples were collected on July 17, 2001 and were analyzed for major ions. The samples were collected by EPA clean sampling method 1669. The major ions (aluminum, calcium, iron, potassium, magnesium and sodium) analysis was performed using EPA Method 200.7.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS, MS/MSD samples and certified reference material (CRM) samples. Sample 13560, was selected by the laboratory, as the MS/MSD for this data set.

All LCS %Rs met acceptance criteria.

All MS/MSD %Rs met acceptance criteria.

All CRM %Rs met laboratory specified acceptance criteria, except for the following:

Analyte	CRM %R 1640-1	CRM %R 1640-11	Lab Tolerance
Aluminum	70	78	80-120

Aluminum was recovered low in both of the CRMs analyzed in this sample group, therefore the sample and sample duplicate results (possibly biased low), were flagged "UJ" for all non-detect results.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries and the field duplicate sample.

The MS/MSD RPD was within laboratory specified acceptance criteria.

The field duplicate RPD was within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP with the exceptions noted above.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of major ions above the MAL. As required by EPA clean sampling method 1669, field quality assurance and quality control samples were collected and analyzed to confirm that the sampling was conducted consistently and without contamination. There were no equipment blanks or field duplicates collected at this TMDL site on July 17, 2001.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

ANIONS (CHLORIDE AND SULFATE)

General

This sample group consisted of two (2) samples, including one environmental aqueous sample and a laboratory duplicate sample, randomly selected by the lab. The sample was collected on July 17, 2001 and was analyzed for chloride and sulfate using USEPA SW846 Method 9056.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS and LCSD samples.

All LCS and LSCD %Rs met acceptance criteria.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the LCS/LCSD recoveries and laboratory duplicate analyte values. Sample 13560-5 was randomly selected by the laboratory as a laboratory duplicate sample.

LCS/LCSD RPDs were within laboratory specified acceptance criteria for chloride and sulfate.

Chloride and sulfate met the QAPP tolerance for the laboratory duplicate samples.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of sulfate and chloride above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

TOTAL SUSPENDED SOLIDS (TSS)

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on July 17, 2001 and was analyzed for TSS using EPA Method 160.2.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS sample.

The LCS %R met acceptance criteria.

Precision

There was no precision data available for evaluation.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of total suspended solids (TSS) above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

DATA VERIFICATION REPORT

for aqueous samples collected from the

RIO GRANDE SEGMENT 2304 TMDL SITE

February 26, 2002

Data Verification by: Sandra de las Fuentes

The following data verification summary report covers environmental aqueous samples and associated field quality control (QC) samples collected from the Rio Grande Segment 2304, Station 13208, on February 26, 2002.

A Chemist with Parsons has reviewed the data submitted by DHL Analytical, APPL, Inc., Albion Environmental and The University of North Texas.

The samples in this event were analyzed for volatiles, semivolatiles, pesticides (including triazines, PCBs, organophosphorus compounds, herbicides and carbamates), cyanide, total metals (mercury and selenium), dissolved metals (arsenic), dissolved trace metals (silver, aluminum, cadmium, chromium, copper, nickel, lead and zinc), dissolved major ions (calcium, iron, potassium, magnesium and sodium), anions (chloride and sulfate) and total suspended solids (TSS).

Due to an error in the field, there was no sample collected for hardness analysis.

There were no field quality control samples collected at this site. There were no trip blanks analyzed for volatiles and no field blanks or equipment blanks were collected in association with the sediment samples in this DVR. Therefore, the possibility of contamination during sampling or handling could not be evaluated for these samples.

All samples were collected by Parsons and were analyzed by the various laboratories following procedures outlined in the Assessment of the Presence and Causes of Ambient Toxicity Quality Assurance Project Plan (QAPP).

REVIEW CRITERIA

All data submitted by the various laboratories has been reviewed. Field and laboratory QC sample information was examined, including: laboratory blanks, laboratory control samples (LCS), laboratory duplicates, matrix spikes and matrix spike duplicate (MS and MSD) samples, certified reference material (CRM) samples, surrogate spikes and Chain-of-Custody (COC) forms. The findings presented in this report are based on the reviewed information and whether the requirements specified in the project QAPP were met.

VOLATILES

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on February 26, 2001 and was analyzed for volatile organic compounds (VOCs). The VOC analyses were performed using USEPA SW846 Method 8260B.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the LCS sample and surrogate spikes.

The percent recoveries for the LCS were all within QAPP acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

There was no precision data available for evaluation.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was analyzed in association with the samples. The blank was free of target analytes above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All volatile results for the samples in this report were considered usable. The completeness for the VOC portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

SEMIVOLATILES

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on February 28, 2002 and was analyzed for semi-volatile organic compounds (SVOCs). The SVOC analyses were performed using USEPA SW846 Method 8270C.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the MS/MSD samples, LCS samples, and the surrogate spikes. Another clients sample was used for the MS/MSD sample for the batch QC. The results for the MS/MSD will be discussed although not used to qualify the data for the sample in this group. It should be noted that only a small subset of analytes was reported for the MS/MSD.

All MS/MSD %Rs were within acceptance criteria.

All LCS %Rs were within acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries.

All MS/MSD RPDs were within laboratory specified acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was analyzed in association with the samples. The blank was free of target analytes above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All semivolatile results for the samples in this report were considered usable. The completeness for the SVOC portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

TRIAZINES

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on February 26, 2002 and was analyzed for triazine. The triazine compounds, atrazine, cyanazine, metolachlor and simazine, were analyzed using USEPA SW846 Method 8141A.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the LCS sample and surrogate spikes.

All LCS %Rs were within acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

There was no precision data available for evaluation.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was run in association with the triazine analyses. The blank was free of any triazines above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All triazine results for the sample in this report were considered usable. The completeness for the triazine portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

PESTICIDES / PCBS

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on February 26, 2002, and was analyzed for pesticides and PCBs. The pesticide/PCB analyses were performed using USEPA SW846 Method 8081A/8082.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the LCS sample and surrogate spikes

The LCS percent recoveries were within acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

There was no precision data available for evaluation.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was run in association with the pesticide/PCB analyses. The blank was free of any pesticides or PCBs of concern above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All pesticide/PCB results for the samples in this report were considered usable. The completeness for the pesticide/PCB portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

ORGANOPHOSPHORUS COMPOUNDS

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on February 26, 2002, and was analyzed for organophosphorus compounds. The organophosphorus compounds, Chloropyrifos, Demeton, Diazinon, Guthion, Malathion and Parathion were analyzed using USEPA SW846 Method 8141A.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the LCS sample and surrogate spikes.

The LCS percent recoveries were within acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

There was no precision data available for evaluation.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was run in association with the organophosphorus compound analyses. The blank was free of any organophosphorus compounds above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All organophosphorus compound results for the sample in this report were considered usable. The completeness for the organophosphorus compound portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

HERBICIDES

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on February 26, 2002, and was analyzed for herbicides. Herbicides, 2,4,5-T, 2,4,5-TP (Silvex) and 2,4-D, were analyzed using USEPA SW846 Method 8151A.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the LCS sample and the surrogate spike.

The LCS percent recoveries were within acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

There was no precision data available for evaluation.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

The method blank was run in association with the herbicide analyses. The blank was free of any herbicides above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All herbicide results for the samples in this report were considered usable. The completeness for the herbicides portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

CARBAMATES

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on February 26, 2002, and was analyzed for carbamates. The carbamate compounds, carbaryl and diuron were analyzed using USEPA SW846 Method 8321A.

Accuracy

Accuracy was evaluated using the percent recovery (%R) results for the LCS sample and surrogate spikes.

The LCS percent recoveries were within acceptance criteria.

All surrogate spike recoveries met laboratory specified tolerance in the samples, QC and method blanks.

Precision

There was no precision data available for evaluation.

Representativeness

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and

• Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the QAPP and within the hold time required by the method.

One method blank was run in association with the carbamate analyses. The blank was free of any carbamates of concern above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All carbamate results for the samples in this report were considered usable. The completeness for the carbamates portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

HARDNESS

Due to an error in the field, there was no sample collected for hardness analysis.

CYANIDE

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on February 26, 2002 and was analyzed for Cyanide using EPA Method 335.2.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS sample.

The LCS %R met acceptance criteria.

Precision

There was no precision data available for evaluation.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of cyanide above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All cyanide results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

METALS

Total Mercury

General

This sample group consisted of three (3) samples, including one environmental aqueous sample and one pair of MS/MSD samples. The samples were collected on February 26, 2002 and were analyzed for total mercury. The samples were collected by EPA clean sampling method 1669. The mercury analysis was performed using EPA Method 1631b.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS, MS/MSD samples and certified reference material (CRM) samples. Sample 13208, was selected by the laboratory, as the MS/MSD for this data set.

The LCS %R met acceptance criteria.

All MS/MSD %Rs met acceptance criteria.

All CRM %Rs met laboratory specified acceptance criteria.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries.

The MS/MSD RPD was within laboratory specified acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP with the exceptions noted above.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of total mercury above the MAL. As required by EPA clean sampling method 1669, field quality assurance and quality control samples were collected

and analyzed to confirm that the sampling was conducted consistently and without contamination. The field blank was free of total mercury above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

Dissolved Arsenic

General

This sample group consisted of three (3) samples, including one environmental aqueous sample and one pair of MS/MSD samples. The samples were collected on February 26, 2002 and were analyzed for dissolved arsenic. The samples were collected by EPA clean sampling method 1669. The arsenic analyses were performed using EPA Method 1632.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS, MS/MSD samples and certified reference material (CRM) samples. Sample 13208, was selected by the laboratory, as the MS/MSD for this data set.

The LCS %R met acceptance criteria.

All MS/MSD %Rs met acceptance criteria.

All CRM %Rs met laboratory specified acceptance criteria.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries.

The MS/MSD RPD was within laboratory specified acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP with the exceptions noted above.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of dissolved arsenic above the MAL. As required by EPA clean sampling method 1669, field quality assurance and quality control samples were collected and analyzed to confirm that the sampling was conducted consistently and without contamination. The field blank was free of dissolved arsenic above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

Total Selenium

General

This sample group consisted of three (3) samples, including one environmental aqueous sample and one pair of MS/MSD samples. The samples were collected on February 26, 2002 and were analyzed for total selenium. The samples were collected by EPA clean sampling method 1669. The selenium analysis was performed using EPA Method 1632(mod).

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS, MS/MSD samples and certified reference material (CRM) samples. Sample 13208, was selected by the laboratory, as the MS/MSD for this data set.

The LCS %R met acceptance criteria.

All MS/MSD %Rs met acceptance criteria.

All CRM %Rs met laboratory specified acceptance criteria.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries.

The MS/MSD RPD was within laboratory specified acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP with the exceptions noted above.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of total selenium above the MAL. As required by EPA clean sampling method 1669, field quality assurance and quality control samples were collected and analyzed to confirm that the sampling was conducted consistently and without contamination. The field blank was free of total selenium above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

Trace Metals

General

This sample group consisted of three (3) samples, including one environmental aqueous sample and one pair of MS/MSD samples. The samples were collected on February 26, 2002 and were analyzed for trace metals. The samples were collected by EPA clean sampling method 1669. Trace metals (aluminum, silver, cadmium, chromium, copper, nickel, lead and zinc) analysis was performed using EPA Method 1638.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS, MS/MSD samples and certified reference material (CRM) samples. Sample 13208, was selected by the laboratory, as the MS/MSD for this data set.

The LCS %R met acceptance criteria.

All MS/MSD %Rs met acceptance criteria.

All CRM %Rs met laboratory specified acceptance criteria.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries.

The MS/MSD RPD was within laboratory specified acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP with the exceptions noted above.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of trace metals above the MAL. As required by EPA clean sampling method 1669, field quality assurance and quality control samples were collected and analyzed to confirm that the sampling was conducted consistently and without contamination. The field blank was free of trace metals above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

Major Ions

General

This sample group consisted of three (3) samples, including one environmental aqueous sample and one pair of MS/MSD samples, randomly selected by the laboratory. The samples were collected on February 26, 2002 and were analyzed for major ions. The samples were collected by EPA clean sampling method 1669. Due to equipment problems at Albion Environmental, the metals were analyzed by the alternate flame AAS method instead of ICP-MS. The major ions magnesium, calcium, iron, potassium and sodium were analysis using EPA Methods 242.1, 215.1, 236.1, 258.1, 273.1, respectively.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS, MS/MSD samples and certified reference material (CRM) samples. Sample 13208, was selected by the laboratory, as the MS/MSD for this data set.

All LCS %Rs met acceptance criteria.

All MS/MSD %Rs met acceptance criteria.

All CRM %Rs met laboratory specified acceptance criteria.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the MS/MSD recoveries and the field duplicate sample.

The MS/MSD RPD was within laboratory specified acceptance criteria.

The field duplicate RPD was within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and

J:\740\740785 TNRCC TOX\SEGMENTS REPORTS\RIO GRANDE-2304\FINAL REPORT\APPENDIX E\APP E (3-DVRS COMBINED) RIO GRANDE (2304).DOC

• Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP with the exceptions noted above.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of major ions above the MAL. As required by EPA clean sampling method 1669, field quality assurance and quality control samples were collected and analyzed to confirm that the sampling was conducted consistently and without contamination. Both the Field Blank and Equipment Blank were free of all major ions above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

ANIONS (CHLORIDE AND SULFATE)

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on February 26, 2002 and was analyzed for chloride and sulfate using USEPA SW846 Method 9056.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS and LCSD samples.

All LCS and LSCD %Rs met acceptance criteria.

Precision

Precision was evaluated using the Relative Percent Difference (RPD) obtained from the LCS/LCSD recoveries.

LCS/LCSD RPDs were within laboratory specified acceptance criteria for chloride and sulfate.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of sulfate and chloride above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

TOTAL SUSPENDED SOLIDS (TSS)

General

This sample group consisted of one (1) environmental aqueous sample. The sample was collected on February 26, 2002 and was analyzed for TSS using EPA Method 160.2.

Accuracy

Accuracy was evaluated using the percent recovery (%R) for the LCS sample.

The LCS %R met acceptance criteria.

Precision

There was no precision data available for evaluation.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing actual analytical procedures to those described in the QAPP;
- Evaluating holding times; and
- Examining laboratory blanks for contamination of samples during analysis.

All samples were prepared and analyzed following the procedures outlined in the QAPP.

All samples were prepared and analyzed within the hold time required by the method.

All laboratory blanks were free of total suspended solids (TSS) above the MAL.

Completeness

Completeness was evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All metals results for the samples in this report were considered usable. The completeness for the metals portion of this data set is 100%, which meets the minimum QAPP acceptance criteria of 90%.

Parameter	Units	Method Type	Method	Method Description	Storet	MAL	Precision of Laboratory Duplicates (RPD)	Accuracy of Matrix Spikes % Recovery	Accuracy crm	Percent Complete
				Field Paramete						
рН	pH units	YSI Multi- Parameter Probe	EPA 150.1 or TNRCC SOP	probe	00400	1.0	10	NA	+/- 0.1	90
Dissolved Oxygen (DO)	mg/L	YSI Multi- Parameter Probe	EPA 360.1 or TNRCC SOP	probe	00300	1.0	10	+/- 0.5	NA	90
Conductivity	uS/cm	YSI Multi- Parameter Probe	EPA 120.1 or TNRCC SOP	probe	00094	1	10	+/- 5	+/- 5	90
Temperature	° Celcius	YSI Multi- Parameter Probe	EPA 170.1 or TNRCC SOP	probe	00010	NA	10	NA	NA	90
Salinity	ppt	YSI Multi- Parameter Probe	TNRCC SOP	probe	00480	NA	NA	NA	NA	90
Instantaneous Stream Flow	cfs	Flowmeter	TNRCC SOP	sensor	00061	NA	NA	NA	NA	90
Flow Severity	1-no flow, 2-low, 3-normal, 4-flood, 5-high, 6-dry	Observation	TNRCC SOP	Field observation	01351	NA	NA	NA	NA	90
			Co	nventional Parar	neters				<u>.</u>	
Total Residual Chlorine	mg/L	DPD	EPA 330.5	colorimetric	50060	0.1	20%	NA	NA	90
Sediment Grain-size	% particle size	Frac. Separation & gravi.metric determination	EPA 3.4, 3.5 (600/2-78-054)	Separation and gravimetric	89991, 82009, 82008, 80256	NA	NA	NA	NA	90
Total Suspended Solids	mg/L	gravimetric	EPA 160.2	gravimetric	00530	4.0	20	NA	+/- 10%	90
Total Organic Carbon (TOC)	mg/L	oxidation	EPA 415.1	oxidation	00680	1.0	20	78-120	+/- 10%	90
Total Organic Carbon (TOC) in sediment	mg/kg	Combustion	B&B Laboratories SOP 1005 See Appendix I	Combustion	81951	0.3	15	80-120	+/- 5%	90
Oil & Grease	mg/L	Extraction Gravimetry	EPA 413.1	Freon Extractable Material	00556	1.0	20	80-120	+/-10%	90
Dissolved Organic Carbon (DOC)	mg/L	oxidation	EPA 415.2	oxidation	00681	0.1	20	78-120	+/- 10%	90
Total Alkalinity, as CaCO ₃	mg/L	potentiometric	EPA 310.12	potentiometri c	00410	3.0	20	78-120	NA	90
Total Dissolved Solids (TDS)	mg/L	residue gravimetric	EPA 160.1	residue gravimetric	70300	10.0	20	NA	NA	90
Sulfate in water	mg/L	ion chromatoph gry	EPA 300.0/9056	IC	00945	3	20	70-113	+/- 10%	90
Sulfate in sediment	mg/kg	ion chromatoph gry	EPA 300.0/9056	IC	85818	10	30	80-120	80-120	90
Sulfide in water	mg/L	colorimetric	EPA 371.2	colorimetric	00745	1.0	20	80-120	+/-10%	90
Flouride in water	mg/L	colorimetric	EPA 340.3/9056	Colorimetric/ IC	00950	0.5	20	80-120	+/-10%	90

Parameter	Units	Method Type	Method	Method Description	Storet	MAL	Precision of Laboratory Duplicates (RPD)	Accuracy of Matrix Spikes % Recovery	Accuracy crm	Percent Complete
Chloride in water	mg/L	colorimetric	EPA 325.2/9256	Colorimetric automated ferricyanide/I C	00940	1.0	20	80-120		90
Chloride in sediment	mg/kg	IC	EPA 300.0	IC	00943	10	30	80-120	80-120	90
Ammonia-N	mg/L	colorimetric	EPA 350.1	colorimetric	00610	0.02	20	68-135	NA	90
o-Phosphorus	mg/L	colorimetric, absorbic acid	EPA 365.3	IC	00671	0.01	20	80-120	NA	90
Potassium, total recoverable in water	mg/L	ICP/AES	EPA 200.7	ICP/AES	00937	0.05	20	80-149	90-110	90
Potassium in sediment	mg/kg	ICP/MS	EPA 6020	ICP/MS	00938	25	25	NA	80-120	90
Sodium, total recoverable in water	mg/L	ICP/AES	EPA 200.7	ICP/AES	00929	0.2	20	79-137	90-110	90
Sodium in sediment	mg/kg	ICP/MS	EPA 6020	ICP/MS	00934	25	25	NA	80-120	90
Nitrate/nitrite-N	mg/L	ion chromatograp hy	EPA 353.2	Colorimetric automated cadmium reduction	00630	0.01	20	83-125	+/- 10%	90
Total Kjeldahl Nitrogen	mg/L	colorimetric, automated phenate	EPA 351.2	colorimetric	00625	0.1	20	72-133	+/- 10%	90
Total Phosphorus (TPO4)	mg/L	colorimetric, automated, block digestor	365.1-4	colorimetric	00665	0.02	20	74-118	+/- 10%	90
Cyanide	mg/L	spectrophoto- metric	EPA 335.2	spectrophoto metric	00720	5	20	80-120	+/-10%	90
Turbidity	NTU	nephelometric	EPA 180.1	nephelometri c	82079	0.05	20	NA	+/-10%	90
Carbonaceous Biochemical Oxygen Demand (BOD)	mg/L	potentiometri c	EPA 405.1	potentiometri c	00307	1.0	25	NA	+/- 5%	90
Chemical Oxygen Demand (COD)	mg/L	colorimetric	EPA 410.1-3	colorimetric	00335 or 00340	10	25	NA	+/- 5%	90
Acid volatile sulfide in sediment	umol/g	colorimetry	EPA Draft 1991	Purge and trap, colorimetry	50088	0.5	40	60-130	NA	90
SEM Simultaneous extraction, sum of concentrations: Cd, Cu, Pb, Hg, Ni, Ag, and Zn	umol/g	CVAAS Hg, ICP Other elements	EPA 200.7/245.5	Purge and Trap, Atomic spectroscopy	50087	0.05- 0.5 varies w/ metal	40	NA	NA	90
		1		e metals, and rela					I I	
Aluminum, dissolved in water	μg/L	ICP-MS	EPA 200.8	ICP-MS	01106	10	25	80-120	80-120	90
Aluminum, total in water	μg/L	ICP-MS	EPA 200.8	ICP-MS	01105	10	25 25	80-120	80-120	90
Aluminum in sediment	mg/kg	Primary Direct	EPA 200.8 or 6010B/6020	ICP-MS	01108			NA	80-120	90
Arsenic, dissolved in water	μg/L	HGAFS	EPA 200.8	HGAF	01000	10	25	55-146	55-146	90
Arsenic, total in water	μg/L	HGAFS	EPA 1632	HGAF	01002	0.5	25	55-146	55-146	90
Arsenic in sediment	mg/kg	Primary Direct	EPA 6020/200.8	ICP-MS	01003	2.5	25	80-120	80-120	90
Barium, dissolved in water	μg/L	Primary Direct	EPA 200.8	ICP-MS	01005	10	25	80-120	80-120	90

Parameter	Units	Method Type	Method	Method Description	Storet	MAL	Precision of Laboratory Duplicates (RPD)	Accuracy of Matrix Spikes % Recovery	Accuracy crm	Percent Complete
Barium in sediment	mg/kg	Primary Direct	EPA 6020/200.8	ICP-MS	01008	2.5	25	80-120	80-120	90
Cadmium, dissolved in water	μg/L	ICP-MS	EPA 200.8	ICP-MS	01025	0.1	25	80-120	80-120	90
		Alternate Direct	EPA 200.9	GFAAS	01025	0.05	25	64-145	64-145	90
Cadmium, total in water	μg/L	Primary Direct	EPA 200.8	ICP-MS	01027	0.1	25	84-113	84-113	90
		Alternate Direct	EPA 200.9	GFAAS	01027	0.05	25	64-145	64-145	90
Cadmium in sediment	mg/kg	Primary Direct	EPA 200.8 or 6010B/6020	ICP-MS	01028	0.2	25	80-120	80-120	90
Calcium, dissolved in water	mg/L	ICP/AES	EPA 200.7	ICP-AES	00915	0.05	20	84-113	84-113	90
		Alternate Direct	EPA 215.1	Flame AAS	00915	0.03	20	80-120	80-120	90
Calcium, total recoverable in water	mg/L	ICP/AES	EPA 200.7	ICP-AES	00916	0.05	20	84-113	84-113	90
Calcium in sediment	mg/kg	Primary Direct	EPA 200.8 or 6010B/6020	ICP-MS	00917	12.5	25	80-120	80-120	90
Chromium, dissolved in water	μg/L	ICP-MS	EPA 200.8	ICP-MS	01030	2.0	25	80-120	80-120	90
Chromium, total in water	µg/L	Primary Direct	EPA 200.8	ICP-MS	01034	2.0	25	80-120	80-120	90
Chromium (hexavalent), total in water	μg/L	Ion Chromatogra phy	EPA 1636	IC	01032	5.0	20	79-122	79-122	90
Chromium in sediment	mg/kg	Primary Direct	EPA 6020/200.8	ICP-MS	01029	2	25	80-120	80-120	90
Copper, dissolved in water	μg/L	ICP-MS	EPA 200.8	ICP-MS	01040	0.2	25	51-145	51-145	90
Copper, total in water	µg/L	Primary Direct	EPA 200.8	ICP-MS	01042	0.2	25	51-145	51-145	90
Copper in sediment	mg/kg	Primary Direct	EPA 6020/200.8	ICP-MS	01043	2.5	25	80-120	80-120	90
Hardness, total in water	mg/L	Primary Direct	EPA 130.12	Titrametric EDTA	00900	1.0, as CaCO ³	20	80-120	80-120	90
Iron, total recoverable in water	μg/L	ICP-AES	EPA 200.7	ICP-AES	01045	0.05				90
Iron in sediment	mg/kg	ICP/MS	EPA 6020A	ICP/MS	01170	12.5				90
Lead, dissolved in water	µg/L	ICP-MS	EPA 200.8	ICP-MS	01049	0.05	25	72-143	72-143	90
Lead, total in water	μg/L	Primary Direct	EPA 200.8	ICP-MS	01051	0.05	25	72-143	72-143	90
Lead, in sediment	mg/kg	Primary Direct	EPA 200.8 or 6010B/6020	ICP-MS	01052	2	25	80-120	80-120	90
Magnesium, dissolved in water	mg/L	ICP/AES Alternate Direct	EPA 200.7 EPA 242.1	ICP-AES Flame AAS	00925 00925	0.05 0.003	20 20	80-120 80-120	80-120 80-120	90 90
Magnesium, total recoverable in water	mg/L	ICP/AES	EPA 200.7	ICP-AES	00927	0.05	20	80-120	80-120	90
Magnesium in sediment	mg/kg	ICP/MS	EPA 6020	ICP/MS	00924	25	25	NA	80-120	90
Mercury, dissolved in water	μg/L	Primary Direct	EPA 1631	P/T CVAF	71890	0.0005	25	71-125	71-125	90
Mercury, total recoverable in water	μg/L	P/T CVAFS	EPA 1631	P/T CVAF	71900	0.0005	25	71-125	71-125	90
Mercury in sediment	mg/kg	Primary Direct	EPA 245.5	CVAAS	71921	0.05	25	80-120	80-120	90

Nickel, dissolved in water	µg/L	ICP-MS	EPA 200.8	ICP-MS	01065	1.0	20	68-134	68-134	90
		Alternate Direct	EPA 200.9	GFAAS	01065	2.0	25	65-145	65-145	90
Nickel, total in water	µg/L	Primary Direct	EPA 200.8	ICP-MS	01067	1.0	20	68-134	68-134	90
		Alternate Direct	EPA 200.9	GFAAS	01067	2.0	25	65-145	65-145	90
Nickel in sediment	mg/kg	Primary Direct	EPA 6020/200.8	ICP-MS	01068	2.5	20	80-120	80-120	90
Selenium, dissolved in water	μg/L	Primary Direct	EPA 200.8	ICP-MS	01145	1 or 2	25	59-149	59-149	90
		Alternate Direct	EPA 200.9	GFAAS	01145	2	25	56-131	56-131	90
Selenium, total recoverable in water	μg/L	ICP-MS	EPA 200.8	ICP-MS	01147	2	25	59-149	59-149	90
		Alternate Direct	EPA 200.9	GFAAS	01147	2	25	56-131	56-131	90
Selenium in sediment	mg/kg	Primary Direct	EPA 6010B/6020/200. 8	ICP-MS	01148	5	25	80-120	80-120	90
Silver, dissolved in water	μg/L	ICP-MS	EPA 200.8	ICP-MS	01075	0.1	25	74-119	74-119	90
Silver, total in water	µg/L	Primary Direct	EPA 200.8	ICP-MS	01077	0.1	25	74-119	74-119	90
Silver in sediment	mg/kg	Primary Direct	EPA 6020/200.8	ICP-MS	01078	1	25	75-125	75-125	90
Zinc, dissolved in water	μg/L	ICP-MS	EPA 200.8	ICP-MS	01090	0.5	25	46-146	46-146	90
		Alternate Direct	EPA 200.7	ICP-AES	01090	5.0	25	67-142	67-142	90
		Alternate Direct	EPA 200.9	GFAAS	01090	0.5	25	67-142	67-142	90
Zinc, total in water	μg/L	Primary Direct	EPA 200.8	ICP-MS	01092	0.5	25	46-146	46-146	90
		Alternate Direct	EPA 200.7	ICP-MS	01092	5.0	25	80-120	80-120	90
		Alternate Direct	EPA 200.9	GFAAS	01092	0.5	25	67-142	67-142	90
Zinc, in sediment	mg/kg	Primary Direct	EPA 6020/200.8	ICP-MS	01093	2.5	25	80-120	80-120	90
	-			d Organometa	l Compound	ls		-		
Acenaphthene in water	μg/L	Primary	EPA 8270C	GC/MS	34205	4	30	49-125	49-125	90
Acenaphthene in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34208	133	30	47-145	47-145	90
Anthracene in water	μg/L	Primary	EPA 8270C	GC/MS	34220	4	30	45-165	45-165	90
Anthracene in sediment	μg/kg	Primary	EPA 8270C	GC/MS	34223	660	30	27-133	27-133	90
Acenapthylene in water	μg/L	Primary	EPA 8270C	GC/MS	34200	4	30	47-125	47-125	90
Acenapthylene in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34203	660	30	33-145	33-145	90
Acrolein in sediment (Propenal)	µg/kg	Primary	EPA8260B	GC/MS	34213	51	40	25-175	25-175	90
Acrylonitrile in water	μg/L	Primary	EPA8260B	GC/MS	34215	50	20	50-150	50-150	90
Acrylonitrile in sediment	µg/kg	Primary	EPA8260B	GC/MS	34218	3.71	40	25-175	25-175	90

Alachlor in water	μg/L	Primary	EPA 8081	GC/ECD	77825	0.10	25	50-150	50-150	90
	10	Alternate	EPA 525.1	L/S	77825	0.3	25			90
				Extraction +						
				Capillary						
		Altomoto	EPA 645	GC/MS GC		0.6	25			90
		Alternate Alternate	EPA 645 EPA 1656	GC/ECD		0.6	25	23-101		90
Alachlor in sediment	µg/kg	Primary	EPA 1050	GC/ECD GC/ECD	75050	100	30	50-150	50-150	90
Aldrin in water	μg/kg μg/L	Primary	EPA 8081	GC/ECD GC/ECD	39330	0.05	25	20-100	20-100	90
Aldrin in sediment	μg/L μg/kg	Primary	EPA 8081	GC/ECD GC/NPD	39333	50	30	50-150	50-150	90
Atrazine in water	μg/kg μg/L	Primary	EPA 619	GC	39630	0.15	25	62-191	62-191	90
Attazine in water	μg/L	Alternate	EPA 525.1	L/S	39030	0.42	25	02-171	02-171	90
		7 Internate	EI II 020.1	Extraction +		0.12	25			<i>)</i> 0
				Capillary						
				GC/MS						
		Alternate	EPA 1656	GC/ECD		1.5	25	31-132		90
Atrazine in sediment	µg/kg	Primary	EPA 8141	GC/NPD	39631	50	30			90
Benzene in water	μg/L	Primary	EPA 8260B	GC/MS	34030	1	20	75-125	75-125	90
Benzene in sediment	µg/kg	Primary	EPA 8260B	GC/MS	34237	10	40	25-165	25-165	90
Bromoform in water	μg/L	Primary	EPA 8260B	GC/MS	32104	1	20	75-125	75-125	90
Bromoform in sediment	µg/kg	Primary	EPA 8260B	GC/MS	34290	10	40	30-180	30-180	90
Bromomethane in water	μg/L	Primary	EPA 8260B	GC/MS	30202	1	20	62-147	62-147	90
Bromomethane in sediment	µg/kg	Primary	EPA 8260B	GC/MS	88802	5	30	70-130	70-130	90
Benz (a) Anthracene in water	μg/L	Primary	EPA 8270C	GC/MS	34526	4	30	51-133	51-133	90
Benz (a) Anthracene in sediment	μg/kg	Primary	EPA 8270C	GC/MS	34529	660	30	33-143	33-143	90
Benzo (a) Pyrene in water	μg/L	Primary	EPA 8270C	GC/MS	34247	4	30	41-125	41-125	90
Benzo (a) Pyrene in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34250	660	30	17-163	17-163	90
Benzo (b) fluoranthene in water	μg/L	Primary	EPA 8270C	GC/MS	34230	4	30	37-125	37-152	90
Benzo (b) fluoranthene in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34233	133	30	24-159	24-159	90
Benzo (ghi) Perylene in water	µg/L	Primary	EPA 8270C	GC/MS	34521	4	30	34-149	34-149	90
Benzo (ghi) Perylene in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34524	660	30	15-219	15-219	90
Benzo (k) Fluoranthene in water	μg/L	Primary	EPA 8270C	GC/MS	34242	4	30	34-149	34-149	90
Benzo (k) Fluoranthene in sediment	μg/kg	Primary	EPA 8270C	GC/MS	34245	660	30	11-162	11-162	90
BHC, alpha in water	μg/L	Primary	EPA 8081	GC/ECD	39337	0.05	25	35-117	35-117	90
BHC, alpha in sediment	μg/kg	Primary	EPA 8081	GC/ECD	39076	50	30	38-137	38-137	90
BHC, beta in water	μg/L	Primary	EPA 8081	GC/ECD	39338	0.05	25	51-121	51-121	90
BHC, beta in sediment	µg/kg	Primary	EPA 8081	GC/ECD	34257	50	30	51-133	51-133	90
BHC, delta in water	µg/L	Primary	EPA 8081	GC/ECD	34259	0.05	25	32-121	32-121	90
BHC, delta in sediment	µg/kg	Primary	EPA 8081	GC/ECD	34262	50	30	43-131	43-131	90
BHC, gamma (Lindane) in water	µg/L	Primary	EPA 8081	GC/ECD	39782	0.05	25	41-114	41-114	90
BHC, gamma (Lindane) in sediment	µg/kg	Primary	EPA 8081	GC/ECD	39783	50	30	47-132	47-132	90
Bis (2-Chloroethoxy) Methane in water	μg/L	Primary	EPA 8270C	GC/MS	34278	4	30	49-125	49-125	90
Bis (2-Chloroethoxy) Methane in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34281	660	30	33-184	33-184	90
Bis (2-Chloroethyl) Ether in water	μg/L	Primary	EPA 8270C	GC/MS	34273	4	30	44-125	44-125	90
Bis (2-Chloroethyl) Ether in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34276	133	30	12-158	12-158	90
Bis (2-Chloroisopropyl) Ether in water	μg/L	Primary	EPA 8270C	GC/MS	34283	4	30	36-166	36-166	90

Bis (2-Chloroisopropyl) Ether in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34286	133	30	36-166	36-166	90
Bis (2-Ethylhexyl) Phthalate in water	μg/L	Primary	EPA 8270C	GC/MS	39100	4	30	33-129	33-129	90
Bis (2-Ethylhexyl) Phthalate in sediment	μg/kg	Primary	EPA 8270C	GC/MS	39102	660	30	8-158	8-158	90
4-Bromophenyl Phenyl Ether in water	μg/L	Primary	EPA 8270C	GC/MS	34636	4	30	53-127	53-127	90
4-Bromophenyl Phenyl Ether in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34639	660	30	53-130	53-130	90
N-Butylbenzyl Phthalate in water	μg/L	Primary	EPA 8270C	GC/MS	34292	10	30	26-125	26-125	90
N-Butylbenzyl Phthalate in sediment	μg/kg	Primary	EPA 8270C	GC/MS	34295	660	30	15-152	15-152	90
Carbaryl (Sevin) in water	μg/L	Primary	EPA 8321	HPLC/MS	39750	1	25	40-131	40-131	90
Carbaryl (Sevin) in sediment	μg/kg	Primary	EPA 8321	HPLC/MS	81818	20	25	34-129	34-129	90
Carbon disulfide in water	μg/L	Primary	EPA 8260B	GC/MS	77041	25	20	50-150	50-150	90
		Alternate	EPA 1624	Isotope Dilution GC/MS	77041	25				90
Carbon disulfide in sediment	µg/kg	Primary	EPA 8260B	GC/MS	78544	50	30	50-150	50-150	90
	μεικε	Alternate	EPA 1624	Isotope Dilution GC/MS	78544	50	25	50 150	50 150	90
Carbon Tetrachloride in water	μg/L	Primary	EPA 8260B	GC/MS	32102	1	20	62-125	62-152	90
Carbon Tetrachloride in sediment	μg/kg	Primary	EPA 8260B	GC/MS	34299	10	40	60-150	60-150	90
Chlorobenzene in water	µg/L	Primary	EPA 8260B	GC/MS	34301	1	20	75-125	75-125	90
Chlorobenzene in sediment	μg/kg	Primary	EPA 8260B	GC/MS	34304	10	40	20-175	20-175	90
Chlorodibromomethane in water	μg/L	Primary	EPA 8260B	GC/MS	32105	1	20	73-125	73-125	90
Chlorodibromomethane in sediment	μg/kg	Primary	EPA 8260B	GC/MS	34309	5	40	40-160	40-160	90
Chloroethane in water	µg/L	Primary	EPA 8260B	GC/MS	34311	1	50	53-145	53-145	90
Chloroethane in sediment	μg/kg	Primary	EPA 8260B	GC/MS	34314	5	40	15-255	15-255	90
2-Chloroethylvinyl ether in water	μg/L	Primary	EPA 8260B	GC/MS	34576	50	20	50-150	50-150	90
2-Chloroethylvinyl ether in sediment	µg/kg	Primary	EPA 8260B	GC/MS	34579	60	40	15-300	15-300	90
Chloroform in water	µg/L	Primary	EPA 8260B	GC/MS	32106	1	20	74-125	74-125	90
Chloroform in sediment	µg/L	Primary	EPA 8260B	GC/MS	34318	10	40	40-150	40-150	90
Chlordane in water	µg/L	Primary	EPA 8081	GC/ECD	39350	0.05	25	45-122	45-122	90
		Alternate	EPA 1656	GC/ECD	39350	1-2	25	69-133		90
		Alternate	EPA 525.1	L/S Extraction + Capillary GC/MS	39350	1-2	25			90
Chlordane in sediment	μg/kg	Primary	EPA 8081	GC/ECD	39351	50	30	56-142	56-142	90
	μg/kg	Alternate	EPA 1656	GC/ECD			25	69-133	69-133	90
Chloromethane in water	μg/L	Primary	EPA 8260B	GC/MS	30201	1	20	60-140	60-140	90
Chloromethane in sediment	µg/kg	Primary	EPA 8260B	GC/MS	88835	10	30	70-130	70-130	90
2-Chloronapthalene in water	μg/L	Primary	EPA 8270C	GC/MS	34581	4	30	60-125	60-125	90
2-Chloronapthalene in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34584	660	30	60-130	60-130	90
2 -Chlorophenol in water	μg/L	Primary	EPA 8270C	GC/MS	34586	4	30	41-125	41-125	90
2 -Chlorophenol in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34589	133	30	31-135	31-135	90
4-Chlorophenyl Phenyl Ether in water	μg/L	Primary	EPA 8270C	GC/MS	34641	4	30	51-132	51-132	90
4-Chlorophenyl Phenyl Ether in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34644	133	30	25-158	25-158	90
Chloropyrifos (Dursban) in water	μg/L	Primary	EPA 8141	GC/NPD	81403	0.5	25	45-118	45-118	90
Chloropyrifos (Dursban) in sediment	µg/kg	Primary	EPA 8141	GC/NPD	81404	50	30	40-129	40-129	90
Chrysene in water	μg/L	Primary	EPA 8270C	GC/MS	34320	4	30	55-133	55-133	90
Chrysene in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34323	133	30	17-168	17-168	90
Cyanazine in water	μg/L	Primary	EPA 619	GC/NPD	81757	0.5	25	30-232	30-232	90

μg/kg μg/L	Primary Primary	EPA 619-m EPA 8151	GC/NPD GC/ECD	03999 39730	50	30			90
10	1 many				0.5	25	72-146	72-146	90
µg/kg	Primary	EPA 8151	GC/ECD	39731	200	30	89-175	89-175	90
μg/kg μg/L	Primary	EPA 8141	GC/NPD	39560	1	25	14-107	14-107	90
10	5				-				90
100	5								90
10	5								90
	2	-							90
	5				•				90
10 0	5						70-130	/0-130	90
10	5								90
10 0							52 120	52,120	90
µg/L	,								90
					0.0=				90
µg/kg	,				50				90
/7					1				90
10					1	-			90
10 0	5				10				
10	2				I c				<u>90</u> 90
10 0	5				5				
	5				l	-			90
	5								90
μg/L	5								90
µg/kg	5								90
μg/L					1	-	, * -=+	,	90
µg/kg	Primary				5				90
μg/L	Primary	EPA 8260B		34704	1	20	74-125	74-125	90
µg/kg	Primary	EPA 8260B	GC/MS	34702	10	30	70-130	70-130	90
µg/kg	Primary	EPA 8260B	GC/MS	34565	10.	40	15-280	15-280	90
μg/L	Primary	EPA 8321	HPLC/MS	39650	1	25	57-133	57-133	90
µg/kg	Primary	EPA 8321	HPLC/MS	73030	20	25	25-133	25-133	90
µg/kg	Primary	EPA 8081	GC/ECD	39373	50	30	36-129	36-129	90
μg/kg	Alternate	EPA 1656	GC/ECD	39373	12	25	79-119	79-119	90
μg/L	Primary	EPA 8081	GC/ECD	39370	0.05	25	27-142	27-142	90
μg/L	Alternate	EPA 1656	GC/ECD	39370	0.036	25	79-119		90
μg/kg	Primary	EPA 8081	GC/ECD	39368	50	30	58-127	58-127	90
ug/kg	Alternate	EPA 1656	GC/ECD	39368	4	25	54-126	54-126	90
	Primary	EPA 8081	GC/ECD	39365	0.05	25	29-120	29-120	90
	Alternate	EPA 1656	GC/ECD	39365	0.030	25	54-126		90
ug/kg	Primary		GC/ECD	39363	50	30	51-129	51-129	90
	Alternate	EPA 1656	GC/ECD	39363	11	25	57-129	57-129	90
	Primary	EPA 8081	GC/ECD	39360	0.05	25	44-119	44-119	90
	,		GC/ECD	39360	0.015	25	57-129		90
ug/L	Primary				4	-		50-125	90
10	5				660	30			90
10 0	5								90
10	2								90
10 0	2								90
10	5								90
μg/kg μg/L	Primary	EPA 8260B	GC/MS GC/MS	34569	4	30	30-125	30-125	90
						20	30-123	30-123	90
	μg/kg μg/kg μg/L μg/kg μg/L	µg/kg Primary µg/L Primary </td <td>$\mu g/kg$$Primary$$EPA 8141$$\mu g/L$$Primary$$EPA 8141$$\mu g/kg$$Primary$$EPA 8141$$\mu g/kg$$Primary$$EPA 8260B$$\mu g/kg$$Primary$$EPA 8260B$$\mu g/kg$$Primary$$EPA 8081$$\mu g/kg$$Primary$$EPA 8260B$$\mu g/L$$Primary$$EPA 8260B$$\mu g/L$$Primary$$EPA 8260B$$\mu g/kg$$Primary$$EPA 8260B$$\mu g/L$$Primary$$EPA 8260B$$\mu g/L$$Primary$$EPA 8260B$$\mu g/L$$Primary$$EPA 8260B$$\mu g/L$$Primary$$EPA 8260B$$\mu g/L$$Primary$$EPA 8260B$$\mu g/L$$Primary$$EPA 8260B$$\mu g/kg$$Primary$$EPA 8260B$$\mu g/kg$$Primary$$EPA 8260B$$\mu g/L$$Primary$$EPA 8260B$$\mu g/kg$$Primary$$EPA 8260B$$\mu g/kg$$Primary$$EPA 8260B$$\mu g/kg$$Primary$$EPA 8260B$$\mu g/kg$$Primary$$EPA 8081$$\mu g/$</td> <td>$\mu g/kg$PrimaryEPA 8141GC/NPD$\mu g/L$PrimaryEPA 8141GC/NPD$\mu g/kg$PrimaryEPA 8141GC/NPD$\mu g/kg$PrimaryEPA 8260BGC/MS$\mu g/kg$PrimaryEPA 8260BGC/MS$\mu g/kg$PrimaryEPA 8081GC/ECD$\mu g/kg$PrimaryEPA 8081GC/ECD$\mu g/kg$PrimaryEPA 8081GC/ECD$\mu g/kg$PrimaryEPA 8081GC/ECD$\mu g/kg$PrimaryEPA 8081GC/ECD$\mu g/kg$PrimaryEPA 8081GC/ECD$\mu g/kg$PrimaryEPA 8081GC/MS$\mu g/kg$PrimaryEPA 8260BGC/MS$\mu g/kg$Primary</td> <td>Image Primary EPA 8141 GC/NPD 82400 $\mu g/L$ Primary EPA 8141 GC/NPD 39570 $\mu g/k$ Primary EPA 8141 GC/NPD 39570 $\mu g/k$ Primary EPA 8260B GC/MS 87651 $\mu g/k$ Primary EPA 8260B GC/MS 88805 $\mu g/L$ Primary EPA 8081 GC/ECD 39780 $\mu g/k$ Primary EPA 8081 GC/ECD 39380 $\mu g/k$ Primary EPA 8081 GC/ECD 39383 $\mu g/k$ Primary EPA 8260B GC/MS 34333 $\mu g/k$ Primary EPA 8260B GC/MS 34333 $\mu g/L$ Primary EPA 8260B GC/MS 34439 $\mu g/k$ Primary EPA 8260B GC/MS 34439 $\mu g/k$ Primary EPA 8260B GC/MS 34531 $\mu g/k$ Primary EPA 8260B GC/MS 34501 $\mu g/k$ Primary<td>μg/kg Primary EPA 8141 GC/NPD 82400 100 μg/L Primary EPA 8141 GC/NPD 39570 0.1 μg/L Primary EPA 8141 GC/NPD 39571 50 μg/L Primary EPA 8260B GC/MS 77651 1 μg/L Primary EPA 8081 GC/ECD 39780 0.10 μg/kg Primary EPA 8081 GC/ECD 39380 0.02 μg/kg Primary EPA 8081 GC/ECD 39380 0.02 μg/kg Primary EPA 8081 GC/ECD 39383 50 mg/L Primary EPA 8260B GC/MS 34310 1 μg/kg Primary EPA 8260B GC/MS 34330 10 μg/L Primary EPA 8260B GC/MS 34331 1 μg/L Primary EPA 8260B GC/MS 34504 5 μg/L Primary EPA 8260B GC/MS 34504<td>$\mu g/kg$ Primary EPA 8141 GC/NPD 82400 100 30 $\mu g/kg$ Primary EPA 8141 GC/NPD 39571 50 30 $\mu g/kg$ Primary EPA 8260B GC/MS 77651 1 20 $\mu g/L$ Primary EPA 8260B GC/MS 88805 10 30 $\mu g/L$ Primary EPA 8081 GC/ECD 39780 0.10 25 $\mu g/kg$ Primary EPA 8081 GC/ECD 39380 0.02 25 $\mu g/kg$ Primary EPA 8081 GC/ECD 39383 50 30 Alternate EPA 1656 GC/ECD 39383 50 30 $\mu g/kg$ Primary EPA 8260B GC/MS 34330 10 40 $\mu g/L$ Primary EPA 8260B GC/MS 34330 10 40 $\mu g/L$ Primary EPA 8260B GC/MS 34531 1 20 $\mu g/kg$ Primary<</td><td>$\mu g/kg$ Primary EPA 8141 GC/NPD 82400 100 30 5-108 $\mu g/kg$ Primary EPA 8141 GC/NPD 39571 50 30 39-124 $\mu g/kg$ Primary EPA 8260B GC/NPD 39571 50 30 39-124 $\mu g/kg$ Primary EPA 8260B GC/NS 88805 10 30 70-130 $\mu g/kg$ Primary EPA 8260B GC/ECD 39780 0.10 25 52-120 $\mu g/kg$ Primary EPA 8081 GC/ECD 39380 0.02 25 52-120 $\mu g/kg$ Primary EPA 8081 GC/ECD 39380 0.02 25 48-158 $\mu g/k$ Primary EPA 8260B GC/MS 32101 1 20 75-125 $\mu g/kg$ Primary EPA 8260B GC/MS 34430 10 40 40-160 $\mu g/kg$ Primary EPA 8260B GC/MS 34431 1 20</td><td></td></td></td>	$\mu g/kg$ $Primary$ $EPA 8141$ $\mu g/L$ $Primary$ $EPA 8141$ $\mu g/kg$ $Primary$ $EPA 8141$ $\mu g/kg$ $Primary$ $EPA 8260B$ $\mu g/kg$ $Primary$ $EPA 8260B$ $\mu g/kg$ $Primary$ $EPA 8081$ $\mu g/kg$ $Primary$ $EPA 8260B$ $\mu g/L$ $Primary$ $EPA 8260B$ $\mu g/L$ $Primary$ $EPA 8260B$ $\mu g/kg$ $Primary$ $EPA 8260B$ $\mu g/L$ $Primary$ $EPA 8260B$ $\mu g/kg$ $Primary$ $EPA 8260B$ $\mu g/kg$ $Primary$ $EPA 8260B$ $\mu g/L$ $Primary$ $EPA 8260B$ $\mu g/kg$ $Primary$ $EPA 8081$ $\mu g/$	$\mu g/kg$ PrimaryEPA 8141GC/NPD $\mu g/L$ PrimaryEPA 8141GC/NPD $\mu g/kg$ PrimaryEPA 8141GC/NPD $\mu g/kg$ PrimaryEPA 8260BGC/MS $\mu g/kg$ PrimaryEPA 8260BGC/MS $\mu g/kg$ PrimaryEPA 8081GC/ECD $\mu g/kg$ PrimaryEPA 8081GC/MS $\mu g/kg$ PrimaryEPA 8260BGC/MS $\mu g/kg$ Primary	Image Primary EPA 8141 GC/NPD 82400 $\mu g/L$ Primary EPA 8141 GC/NPD 39570 $\mu g/k$ Primary EPA 8141 GC/NPD 39570 $\mu g/k$ Primary EPA 8260B GC/MS 87651 $\mu g/k$ Primary EPA 8260B GC/MS 88805 $\mu g/L$ Primary EPA 8081 GC/ECD 39780 $\mu g/k$ Primary EPA 8081 GC/ECD 39380 $\mu g/k$ Primary EPA 8081 GC/ECD 39383 $\mu g/k$ Primary EPA 8260B GC/MS 34333 $\mu g/k$ Primary EPA 8260B GC/MS 34333 $\mu g/L$ Primary EPA 8260B GC/MS 34439 $\mu g/k$ Primary EPA 8260B GC/MS 34439 $\mu g/k$ Primary EPA 8260B GC/MS 34531 $\mu g/k$ Primary EPA 8260B GC/MS 34501 $\mu g/k$ Primary <td>μg/kg Primary EPA 8141 GC/NPD 82400 100 μg/L Primary EPA 8141 GC/NPD 39570 0.1 μg/L Primary EPA 8141 GC/NPD 39571 50 μg/L Primary EPA 8260B GC/MS 77651 1 μg/L Primary EPA 8081 GC/ECD 39780 0.10 μg/kg Primary EPA 8081 GC/ECD 39380 0.02 μg/kg Primary EPA 8081 GC/ECD 39380 0.02 μg/kg Primary EPA 8081 GC/ECD 39383 50 mg/L Primary EPA 8260B GC/MS 34310 1 μg/kg Primary EPA 8260B GC/MS 34330 10 μg/L Primary EPA 8260B GC/MS 34331 1 μg/L Primary EPA 8260B GC/MS 34504 5 μg/L Primary EPA 8260B GC/MS 34504<td>$\mu g/kg$ Primary EPA 8141 GC/NPD 82400 100 30 $\mu g/kg$ Primary EPA 8141 GC/NPD 39571 50 30 $\mu g/kg$ Primary EPA 8260B GC/MS 77651 1 20 $\mu g/L$ Primary EPA 8260B GC/MS 88805 10 30 $\mu g/L$ Primary EPA 8081 GC/ECD 39780 0.10 25 $\mu g/kg$ Primary EPA 8081 GC/ECD 39380 0.02 25 $\mu g/kg$ Primary EPA 8081 GC/ECD 39383 50 30 Alternate EPA 1656 GC/ECD 39383 50 30 $\mu g/kg$ Primary EPA 8260B GC/MS 34330 10 40 $\mu g/L$ Primary EPA 8260B GC/MS 34330 10 40 $\mu g/L$ Primary EPA 8260B GC/MS 34531 1 20 $\mu g/kg$ Primary<</td><td>$\mu g/kg$ Primary EPA 8141 GC/NPD 82400 100 30 5-108 $\mu g/kg$ Primary EPA 8141 GC/NPD 39571 50 30 39-124 $\mu g/kg$ Primary EPA 8260B GC/NPD 39571 50 30 39-124 $\mu g/kg$ Primary EPA 8260B GC/NS 88805 10 30 70-130 $\mu g/kg$ Primary EPA 8260B GC/ECD 39780 0.10 25 52-120 $\mu g/kg$ Primary EPA 8081 GC/ECD 39380 0.02 25 52-120 $\mu g/kg$ Primary EPA 8081 GC/ECD 39380 0.02 25 48-158 $\mu g/k$ Primary EPA 8260B GC/MS 32101 1 20 75-125 $\mu g/kg$ Primary EPA 8260B GC/MS 34430 10 40 40-160 $\mu g/kg$ Primary EPA 8260B GC/MS 34431 1 20</td><td></td></td>	μg/kg Primary EPA 8141 GC/NPD 82400 100 μg/L Primary EPA 8141 GC/NPD 39570 0.1 μg/L Primary EPA 8141 GC/NPD 39571 50 μg/L Primary EPA 8260B GC/MS 77651 1 μg/L Primary EPA 8081 GC/ECD 39780 0.10 μg/kg Primary EPA 8081 GC/ECD 39380 0.02 μg/kg Primary EPA 8081 GC/ECD 39380 0.02 μg/kg Primary EPA 8081 GC/ECD 39383 50 mg/L Primary EPA 8260B GC/MS 34310 1 μg/kg Primary EPA 8260B GC/MS 34330 10 μg/L Primary EPA 8260B GC/MS 34331 1 μg/L Primary EPA 8260B GC/MS 34504 5 μg/L Primary EPA 8260B GC/MS 34504 <td>$\mu g/kg$ Primary EPA 8141 GC/NPD 82400 100 30 $\mu g/kg$ Primary EPA 8141 GC/NPD 39571 50 30 $\mu g/kg$ Primary EPA 8260B GC/MS 77651 1 20 $\mu g/L$ Primary EPA 8260B GC/MS 88805 10 30 $\mu g/L$ Primary EPA 8081 GC/ECD 39780 0.10 25 $\mu g/kg$ Primary EPA 8081 GC/ECD 39380 0.02 25 $\mu g/kg$ Primary EPA 8081 GC/ECD 39383 50 30 Alternate EPA 1656 GC/ECD 39383 50 30 $\mu g/kg$ Primary EPA 8260B GC/MS 34330 10 40 $\mu g/L$ Primary EPA 8260B GC/MS 34330 10 40 $\mu g/L$ Primary EPA 8260B GC/MS 34531 1 20 $\mu g/kg$ Primary<</td> <td>$\mu g/kg$ Primary EPA 8141 GC/NPD 82400 100 30 5-108 $\mu g/kg$ Primary EPA 8141 GC/NPD 39571 50 30 39-124 $\mu g/kg$ Primary EPA 8260B GC/NPD 39571 50 30 39-124 $\mu g/kg$ Primary EPA 8260B GC/NS 88805 10 30 70-130 $\mu g/kg$ Primary EPA 8260B GC/ECD 39780 0.10 25 52-120 $\mu g/kg$ Primary EPA 8081 GC/ECD 39380 0.02 25 52-120 $\mu g/kg$ Primary EPA 8081 GC/ECD 39380 0.02 25 48-158 $\mu g/k$ Primary EPA 8260B GC/MS 32101 1 20 75-125 $\mu g/kg$ Primary EPA 8260B GC/MS 34430 10 40 40-160 $\mu g/kg$ Primary EPA 8260B GC/MS 34431 1 20</td> <td></td>	$\mu g/kg$ Primary EPA 8141 GC/NPD 82400 100 30 $\mu g/kg$ Primary EPA 8141 GC/NPD 39571 50 30 $\mu g/kg$ Primary EPA 8260B GC/MS 77651 1 20 $\mu g/L$ Primary EPA 8260B GC/MS 88805 10 30 $\mu g/L$ Primary EPA 8081 GC/ECD 39780 0.10 25 $\mu g/kg$ Primary EPA 8081 GC/ECD 39380 0.02 25 $\mu g/kg$ Primary EPA 8081 GC/ECD 39383 50 30 Alternate EPA 1656 GC/ECD 39383 50 30 $\mu g/kg$ Primary EPA 8260B GC/MS 34330 10 40 $\mu g/L$ Primary EPA 8260B GC/MS 34330 10 40 $\mu g/L$ Primary EPA 8260B GC/MS 34531 1 20 $\mu g/kg$ Primary<	$\mu g/kg$ Primary EPA 8141 GC/NPD 82400 100 30 5-108 $\mu g/kg$ Primary EPA 8141 GC/NPD 39571 50 30 39-124 $\mu g/kg$ Primary EPA 8260B GC/NPD 39571 50 30 39-124 $\mu g/kg$ Primary EPA 8260B GC/NS 88805 10 30 70-130 $\mu g/kg$ Primary EPA 8260B GC/ECD 39780 0.10 25 52-120 $\mu g/kg$ Primary EPA 8081 GC/ECD 39380 0.02 25 52-120 $\mu g/kg$ Primary EPA 8081 GC/ECD 39380 0.02 25 48-158 $\mu g/k$ Primary EPA 8260B GC/MS 32101 1 20 75-125 $\mu g/kg$ Primary EPA 8260B GC/MS 34430 10 40 40-160 $\mu g/kg$ Primary EPA 8260B GC/MS 34431 1 20	

3.3-Dichlorobenzidine in water	µg/L	Primary	EPA 8270C	GC/MS	34631	4	30	29-175	29-175	90
3.3-Dichlorobenzidine in sediment	μg/kg	Primary	EPA 8270C	GC/MS	34634	133	30	15-262	15-262	90
trans-1.2-Dichloroethene in water	μg/L	Primary	EPA 8260B	GC/MS	34546	1	20	75-125	75-125	90
trans-1,2-Dichloroethene in sediment	μg/kg	Primary	EPA 8260B	GC/MS	34549	10	30	75-125	75-125	90
2,4 -Dichlorophenol in water	μg/L	Primary	EPA 8270C	GC/MS	34601	4	30	46-125	46-125	90
2.4 -Dichlorophenol in sediment	μg/kg	Primary	EPA 8270C	GC/MS	34604	133	30	36-135	36-135	90
trans-1,3-Dichloropropene in water	μg/L	Primary	EPA 8260B	GC/MS	34699	1	20	66-125	66-125	90
trans-1,3-Dichloropropene in sediment	μg/kg	Primary	EPA 8260B	GC/MS	34697	10	30	70-130	70-130	90
Diethyl Phthalate in water	μg/L	Primary	EPA 8270C	GC/MS	34336	10	30	37-125	37-125	90
Diethyl Phthalate in sediment	μg/kg	Primary	EPA 8270C	GC/MS	34339	660	30	15-130	15-130	90
2,4 -Dimethylphenol in water	μg/L	Primary	EPA 8270C	GC/MS	34606	4	30	10-139	10-139	90
2,4 -Dimethylphenol in sediment	μg/kg	Primary	EPA 8270C	GC/MS	34609	133	30	30-149	30-149	90
Dimethyl Phthalate in water	μg/L	Primary	EPA 8270C	GC/MS	34341	4	30	25-175	25-175	90
Dimethyl Phthalate in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34344	660	30	15-130	15-130	90
Di-n-Butyl Phthalate in water	μg/L	Primary	EPA 8270C	GC/MS	39110	10	30	34-136	34-136	90
Di-n-Butyl Phthalate in sediment	μg/kg	Primary	EPA 8270C	GC/MS	39112	330	30	1-130	1-130	90
4,6-Dinitro-ortho-cresol in water	µg/L	Primary	EPA 8270C	GC/MS	34657	10	30	26-134	26-134	90
4,6-Dinitro-ortho-cresol in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34660	330	30	25-144	25-144	90
2,4-Dinitrophenol in water	µg/L	Primary	EPA 8270C	GC/MS	34616	20	30	30-151	30-151	90
2,4-Dinitrophenol in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34619	660	30	25-161	25-161	90
2,4-Dinitrotoluene in water	µg/L	Primary	EPA 8270C	GC/MS	34611	4	30	39-139	39-139	90
2,4-Dinitrotoluene in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34614	133	30	39-139	39-139	90
2,6-Dinitrotoluene in water	µg/L	Primary	EPA 8270C	GC/MS	34626	4	30	51-125	51-125	90
2,6-Dinitrotoluene in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34629	133	30	50-158	50-158	90
Di-n-Octyl Phthalate in water	µg/L	Primary	EPA 8270C	GC/MS	34596	10	30	38-127	38-127	90
Di-n-Octyl Phthalate in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34599	660	30	4-146	4-146	90
Endosulfan in water	µg/L	Primary	EPA 8081	GC/ECD	39388	0.05	25	55-123	55-123	90
Endosulfan in sediment	µg/kg	Primary	EPA 8081	GC/ECD	39389	50	30	56-142	56-142	90
Endosulfan Sulfate in water	µg/L	Primary	EPA 8081	GC/ECD	34351	0.05	25	51-126	51-126	90
Endosulfan Sulfate in sediment	µg/kg	Primary	EPA 8081	GC/ECD	34354	50	30	25-153	25-153	90
Endrin in water	μg/L	Primary	EPA 8081	GC/ECD	39390	0.05	25	40-138	40-138	90
Endrin in sediment	µg/kg	Primary	EPA 8081	GC/ECD	39393	50	30	44-129	44-129	90
Ethylbenzene in water	µg/L	Primary	EPA 8260B	GC/MS	34371	1	20	75-125	75-125	90
Ethylbenzene in sediment	µg/kg	Primary	EPA 8260B	GC/MS	34374	5	40	25-175	25-175	90
Fluorene in water	μg/L	Primary	EPA 8270C	GC/MS	34381	4	30	48-139	48-139	90
Fluorene in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34384	660	30	59-130	59-130	90
Fluoranthene in water	µg/L	Primary	EPA 8270C	GC/MS	34376	4	30	26-137	26-137	90
Fluoranthene in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34379	133	30	26-137	26-137	90
Guthion (Azinphos methyl) in water	µg/L	Primary	EPA 8141	GC/NPD	39580	5.0	25	13-155	13-155	90
Guthion(Azinphos methyl) in sediment	µg/kg	Primary	EPA 8141	GC/NPD	39581	500	30	36-153	36-153	90
Heptachlor in water	μg/L	Primary	EPA 8081	GC/ECD	39410	0.05	25	12-122	12-122	90
Heptachlor in sediment	µg/kg	Primary	EPA 8081	GC/ECD	39413	50	30	37-149	37-149	90

Heptachlor epoxide in water	μg/L	Primary	EPA 8081	GC/ECD	39420	0.05	25	52-121	52-121	90
		Alternate	EPA 1656	GC/ECD	39420	0.04	25	49-131	48-158	90
		Alternate/ Confirmatory	EPA 525.1	L/S Extraction + Capillary	39420	0.7	25	49-131	48-158	90
Heptachlor epoxide in sediment	ug/kg	Primary	EPA 8081	GC/MS GC/ECD	39423	50	30	55-140	55-140	90
rieptaemoi epoxide in sediment	μg/kg μg/kg	Alternate	EPA 1656	GC/ECD GC/ECD	39423	1.0	25	49-131	49-131	90
Hexachlorobenzene in water	μg/kg μg/L	Primary	EPA 8270C	GC/LCD GC/MS	39700	4	30	46-133	46-133	90
Hexachlorobenzene in sediment	μg/L μg/kg	Primary	EPA 8270C	GC/MS	39701	133	30	15-152	15-152	90
Hexachlorobutadiene in water	μg/kg μg/L	Primary	EPA 8260B	GC/MS	34391	135	20	59-128	59-128	90
Hexachlorobutadiene in sediment	μg/L μg/kg	Primary	EPA 8260B	GC/MS	39705	5	30	24-130	24-130	90
Hexachlorocyclopentadiene in water	μg/kg μg/L	Primary	EPA 8270C	GC/MS	34386	10	30	20-125	20-125	90
Hexachlorocyclopentadiene in sediment	μg/L μg/kg	Primary	EPA 8270C	GC/MS	34389	330	30	31-135	31-135	90
Hexachloroethane in water	μg/kg μg/L	Primary	EPA 8270C	GC/MS	34396	4	30	25-153	25-153	90
Hexachloroethane in sediment	μg/L μg/kg	Primary	EPA 8270C	GC/MS	34399	133	30	40-130	40-130	90
Indeno[1,2,3-cd]pyrene in water	μg/kg μg/L	Primary	EPA 8270C	GC/MS	34403	4	30	27-160	27-160	90
Indeno[1,2,3-cd]pyrene in sediment	μg/L μg/kg	Primary	EPA 8270C	GC/MS	34406	133	30	25-170	25-170	90
Isophorone in water	μg/kg μg/L	Primary	EPA 8270C	GC/MS	34408	4	30	26-175	26-175	90
Isophorone in sediment	μg/kg	Primary	EPA 8270C	GC/MS	34411	133	30	25-175	25-175	90
Malathion in water	μg/kg μg/L	Primary	EPA 8141	GC/NPD	39530	0.5	25	40-132	40-132	90
Malathion in sediment	μg/L μg/kg	Primary	EPA 8141	GC/NPD	39531	50	30	45-127	45-127	90
Methoxychlor in water	μg/kg μg/L	Primary	EPA 8081	GC/RTD GC/ECD	39480	0.05	25	39-160	39-160	90
Methoxychlor in sediment	μg/L μg/kg	Primary	EPA 8081	GC/ECD GC/ECD	39480	50	30	37-144	37-144	90
Methyl Bromide in sediment	μg/kg μg/kg	Primary	EPA 8260B	GC/MS	34416	5	40	15-305	15-305	90
Methyl Chloride in sediment	μg/kg μg/kg	Primary	EPA 8260B	GC/MS	34421	5	40	15-320	15-320	90
Methylene Chloride in water	μg/kg μg/L	Primary	EPA 8260B	GC/MS	34423	1	20	75-125	75-125	90
Methylene Chloride in sediment	μg/L μg/kg	Primary	EPA 8260B	GC/MS	34426	5	40	15-250	15-250	90
3-Methyl-4-Chlorophenol in water	μg/kg μg/L	Primary	EPA 8270C	GC/MS	34452	4	30	44-125	44-125	90
3-Methyl-4-Chlorophenol in sediment	μg/L μg/kg	Primary	EPA 8270C	GC/MS	34455	133	30	34-135	34-135	90
Methyl naphthalene	μg/kg	Primary	EPA 8270C	GC/MS	45502	660	30	21-133	21-133	90
2-Methyl phenol in water	μg/L	Primary	EPA 8270C	GC/MS	77152	4	30	25-125	25-125	90
4-Methyl phenol (o-cresol)in water	μg/L μg/L	Primary	EPA 8270C	GC/MS	77146	4	30	25-125	25-125	90
2-Methyl phenol in sediment	μg/kg	Primary	EPA 8270C	GC/MS	78872	134	30	25-135	25-135	90
4-Methyl phenol in sediment	μg/kg	Primary	EPA 8270C	GC/MS	78803	134	30	25-135	25-135	90
Methyl tert-butyl ether in water	μg/L	Primary	EPA 8260B	GC/MS	46491	5	20	65-135	65-135	90
Methyl tert-butyl ether in sediment	μg/kg	Primary	EPA 8260B	GC/MS	50928	10	30	70-130	70-130	90
Metolachlor in water	μg/L	Primary	EPA 8141	GC/NPD	82612	0.5	25		,	90
Metolachlor in sediment	μg/kg	Primary	EPA 8141	GC/NPD	38923	50	30			90
Mirex in water	μg/L	Primary	EPA 8081	GC/ECD	39755	0.1	25			90
Mirex in sediment	μg/kg	Primary	EPA 8081	GC/ECD	79800	100	30			90
Naphthalene in water	μg/L	Primary	EPA 8270C	GC/MS	34696	4	30	50-125	50-125	90
Naphthalene in sediment	μg/kg	Primary	EPA 8270C	GC/MS	34445	660	30	21-133	21-133	90
Nitrobenzene in water	μg/L	Primary	EPA 8270C	GC/MS	34447	4	30	46-133	46-133	90
Nitrobenzene in sediment	μg/kg	Primary	EPA 8270C	GC/MS	34450	133	30	36-143	36-143	90
N-Nitrosodiphenylamine in water	μg/L	Primary	EPA 8270C	GC/MS	34433	4	30	27-125	27-125	90
N-Nitrosodiphenylamine in sediment	μg/kg	Primary	EPA 8270C	GC/MS	34436	133	30	25-135	25-135	90

N-Nitrosodi-n-propylamine in water	μg/L	Primary	EPA 8270C	GC/MS	34428	4	30	37-125	37-125	90
N-Nitrosodi-n-propylamine in sediment	μg/kg	Primary	EPA 8270C	GC/MS	34431	133	30	27-135	27-135	90
2-Nitrophenol in water	μg/L	Primary	EPA 8270C	GC/MS	34591	4	30	44-125	44-125	90
2-Nitrophenol in sediment	μg/kg	Primary	EPA 8270C	GC/MS	34594	133	30	34-135	34-135	90
4-Nitrophenol in water	μg/L	Primary	EPA 8270C	GC/MS	34646	4	30	15-131	15-131	90
4-Nitrophenol in sediment	μg/kg	Primary	EPA 8270C	GC/MS	34649	133	30	25-141	25-141	90
Parathion in water	μg/L	Primary	EPA 8141	GC/NPD	39540	0.5	25	39-136	39-136	90
Parathion in sediment	μg/kg	Primary	EPA 8141	GC/NPD	39541	50	30	33-139	33-139	90
Pentachlorophenol in water	μg/L	Primary	EPA 8270C	GC/MS	39032	4	30	28-136	28-136	90
Pentachlorophenol in sediment	μg/kg	Primary	EPA 8270C	GC/MS	39061	133	30	38-146	38-146	90
Pyrene in water	μg/L	Primary	EPA 8270C	GC/MS	34469	4	30	47-136	47-136	90
Pyrene in sediment	μg/kg	Primary	EPA 8270C	GC/MS	34472	660	30	52-130	52-130	90
Phenanthrene in water	μg/kg μg/L	Primary	EPA 8270C	GC/MS	34461	4	30	54-125	54-125	90
Phenanthrene in sediment	μg/L μg/kg	Primary	EPA 8270C	GC/MS	34464	13310	30	54-130	54-130	90
Phenol in water	μg/kg μg/L	Primary	EPA 8270C	GC/MS	34694	4	30	15-125	15-125	90
Phenol in sediment	10	Primary	EPA 8270C	GC/MS	34695	133	30	25-135	25-135	90
PCBs in water	µg/kg	Primary	EPA 8082	GC/M3 GC/ECD	34693	0.5	25	30-117	30-117	90
total	μg/L	Primary	EFA 8082	GC/ECD	39310	0.5	23	30-117	50-117	90
totai		Alternate	EPA 1656	GC/ECD	39516	0.35	25	75-119	75-119	90
PCB-1242	μg/L	Primary	EPA 8082	GC/ECD	39496	0.35	25	75-117	75-117	90
in water	µg/L	i iinai y	LI A 0002	OC/LCD	59490	0.55	23			90
in outer		Alternate	EPA 1656	GC/ECD	39496	0.35	25	75-119	75-119	90
PCB-1254	μg/L	Primary	EPA 8082	GC/ECD	39504	0.35	25	,011)	,0 11)	90
in water										
		Alternate	EPA 1656	GC/ECD	39504	0.35	25	75-119	75-119	90
PCB-1221	μg/L	Primary	EPA 8082	GC/ECD	39488	0.35	25			90
in water										
		Alternate	EPA 1656	GC/ECD	39488	0.35	25	75-119	75-119	90
PCB-1232	μg/L	Primary	EPA 8082	GC/ECD	39492	0.35	25			90
in water										
		Alternate	EPA 1656	GC/ECD	39492	0.35	25	75-119	75-119	90
PCB-1248	μg/L	Primary	EPA 8082	GC/ECD	39500	0.35	25			90
in water		A.1	EDA 1656	OC/ECD	20500	0.25	25	75.110	75.110	90
DCD 12(0	17	Alternate	EPA 1656	GC/ECD	39500	0.35	25 25	75-119	75-119	90
PCB-1260 in water	μg/L	Primary	EPA 8082	GC/ECD	39508	0.35	25			90
ili watei		Alternate	EPA 1656	GC/ECD	39508	0.35	25	75-119	75-119	90
PCB-1016	µg/L	Primary	EPA 8082	GC/ECD	34671	0.35	25	75-119	75-119	90
in water	µg/L	T TITILAT y	LI / 0002	GC/LCD	54071	0.55	25			70
		Alternate	EPA 1656	GC/ECD	34671	0.35	25	75-119	75-119	90
PCBs in sediment	µg/kg	Primary	EPA 8082	GC/ECD	39519	200	30			90
total		-								
	µg/kg	Alternate	EPA 1656	GC/ECD	39519	1.0	25	75-119	75-119	90
PCB-1242	µg/kg	Primary	EPA 8082	GC/ECD	39499	200	30			90
In Sediment				ļ						
	µg/kg	Alternate	EPA 1656	GC/ECD	39499	1.0	25	75-119	75-119	90
PCB-1254 In Sediment	μg/kg	Primary	EPA 8082	GC/ECD	39507	200	30			90
	µg/kg	Alternate	EPA 1656	GC/ECD	39507	1.0	25	75-119	75-119	90

DCD 1001			ED4 0000	a a / F a P	20.401	200	20	i	i i	0.0
PCB-1221 In Sediment	µg/kg	Primary	EPA 8082	GC/ECD	39491	200	30			90
PCB-1221 In Sediment	µg/kg	Alternate	EPA 1656	GC/ECD	39491	1.0	25	75-119	75-119	90
PCB-1232 In Sediment	µg/kg	Primary	EPA 8082	GC/ECD	39495	200	30			90
	µg/kg	Alternate	EPA 1656	GC/ECD	39495	1.0	25	75-119	75-119	90
PCB-1248 In Sediment	µg/kg	Primary	EPA 8082	GC/ECD	39503	200	30			90
	μg/kg	Alternate	EPA 1656	GC/ECD	39503	1.0	25	75-119	75-119	90
PCB-1260 In Sediment	µg/kg	Primary	EPA 8082	GC/ECD	39511	200	30	61-118	61-118	90
	μg/kg	Alternate	EPA 1656	GC/ECD	39511	1.0	25	75-119	75-119	90
PCB-1016 In Sediment	μg/kg	Primary	EPA 8082	GC/ECD	39514	200	30	56-113	56-113	90
	µg/kg	Alternate	EPA 1656	GC/ECD	39514	1.0	25	75-119	75-119	90
Simazine in water	μg/L	Primary	EPA 8141	GC/NPD	39055	0.5	25	35-135	35-135	90
Simazine in sediments	μg/L	Primary	EPA 8141	GC/NPD	39046	50	30	35-135	35-135	90
2,4,5-T in water	μg/L	Primary	EPA 8151	GC/ECD	39740	0.10	25	45-134	45-134	90
2,4,5-T in sediment	µg/kg	Primary	EPA 8151	GC/ECD	39741	40	30	48-153	48-153	90
2,4,5-TP (Silvex) in water	μg/L	Primary	EPA 8151	GC/ECD	39760	0.1	25	46-125	46-125	90
2,4,5-TP (Silvex) in sediment	µg/kg	Primary	EPA 8151	GC/ECD	39761	40	30	54-145	54-145	90
1,1,2,2-Tetrachloroethane in water	μg/L	Primary	EPA 8260B	GC/MS	34516	1	20	74-125	74-125	90
1,1,2,2-Tetrachloroethane in sediment	µg/kg	Primary	EPA 8260B	GC/MS	34519	5	40	35-170	35-170	90
Tetrachloroethene in water	µg/L	Primary	EPA 8260B	GC/MS	34475	1	20	71-125	71-125	90
Tetrachloroethene in sediment	µg/kg	Primary	EPA 8260B	GC/MS	34478	10	30	70-130	70-130	90
1,2,4-Trichlorobenzene in water	μg/L	Primary	EPA 8270C	GC/MS	34551	4	30	44-142	44-142	90
1,2,4-Trichlorobenzene in sediment	μg/kg	Primary	EPA 8270C	GC/MS	34554	133	30	34-152	34-152	90
Trichloroethylene in water	μg/L	Primary	EPA 8260B	GC/MS	39180	1	20	71-125	71-125	90
Trichloroethylene in sediment	µg/kg	Primary	EPA 8260B	GC/MS	34487	10	40	60-170	60-170	90
1,1,1-trichloro-ethane in water	µg/L	Primary	EPA 8260B	GC/MS	34506	1	20	75-125	75-125	90
1,1,1-trichloro-ethane in sediment	µg/kg	Primary	EPA 8260B	GC/MS	34509	5	25	70-130	70-130	90
1,1,2-trichloro-ethane in water	μg/L	Primary	EPA 8260B	GC/MS	34511	1	20	75-127	75-127	90
1,1,2-trichloro-ethane in sediment	μg/kg	Primary	EPA 8260B	GC/MS	34514	5	25	70-130	70-130	90
2,4,5-Trichlorophenol in water	μg/L	Primary	EPA 8270C	GC/MS	77687	4	30	25-175	25-175	90
2,4,5-Trichlorophenol in sediment	μg/kg	Primary	EPA 8270C	GC/MS	78401	133	30	25-175	25-175	90
2,4,6-Trichlorophenol in water	μg/L	Primary	EPA 8270C	GC/MS	34621	4	30	39-128	39-128	90
2,4,6-Trichlorophenol in sediment	µg/kg	Primary	EPA 8270C	GC/MS	34624	133	30	29-138	29-138	90
Toluene in water	μg/L	Primary	EPA 8260B	GC/MS	34010	1	20	74-125	74-125	90
Toluene in sediment	µg/kg	Primary	EPA 8260B	GC/MS	34483	10	30			90
Toxaphene in water	μg/L	Primary	EPA 8081	GC/ECD	39400	1.0	25	28-131	28-131	90
Toxaphene in water		Alternate	EPA 1656	GC/ECD	39400	2.7	25	76-122		90
		Alternate/ Confirmatory	EPA 525.1	L/S Extraction + Capillary GC/MS	39400	20	25			90
Toxaphene in sediment	ug/kg	Primary	EPA 8081	GC/ECD	39403	500	30	21-113	21-113	90
	μg/kg	Alternate	EPA 1656	GC/ECD	39403	5.0	25	76-122		90

ug/I	Primary	EPA 8260B	GC/MS	39175	1	20	46-134	46-134	90
10	2				10	-			90
	2				1				90
	2				1				90
10	,				10				90
	2								90
	2		Germb		-		70-150	70-150	90
µg/L	i i i i i i i i i i i i i i i i i i i	LV-024/025		50540	0.010	25			<i>)</i> 0
% Survival	Mysidopsis	EPA 600-4-91-	Chronic	89805	NA	NA	NA	NA	90
Yes/No*	bahia	003; 1007.0	Toxicity						
			Screening						
				89806	NA	NA	NA	NA	90
Yes/No*	Berrylina	003; 1006.0							
% Survival	Lentocheirus	EPA 600-R-94-		89815	NΔ	NΔ	NΔ	NΔ	90
	Lepioeneirus			07015	1 1 1	1474	1471	147 \$	<i>)</i> 0
100/110		020, 100.1	Toxicity Test						
% Survival	Neanthes	EPA 823-B-98-	Whole	89816	NA	NA	NA	NA	90
Yes/No*		004	Sediment						
				89802	NA	NA	NA	NA	90
Yes/No*	dubia	002; 1002.0							
% Survival	Pimephales	EPA 600-4-91-		89803	NA	NA	NA	NA	90
Yes/No*	promelas	002; 1000.0	larval						
	-		survival,						
				89813	NA	NA	NA	NA	90
Yes/No	azteca	024; 100.1							
0/ 61	Chimmen	EDA (00 D 04		00014	NT A	NIA	NIA	NIA	90
				89814	INA	NA	INA	NA	90
1 05/100	ieniuns	024, 100.2							
			for sediments						
number	counts	TNRCC	TNRCC	Texas	NA	NA	NA	NA	90
		SOP	SOP	Species					
number	counts	TNRCC	TNRCC	Texas	NA	NA	NA	NA	90
		SOP	SOP	Species Code**					
N A	Counts	TNRCC SOP	TNRCCSOP		N A	N A	N A	NA	00
NA Inches	Counts Grab	TNRCC SOP TNRCC SOP	TNRCC SOP TNRCC SOP	NA 81900	NA NA	NA NA	NA NA	NA NA	<u>90</u> 90
	Yes/No* % Survival Yes/No* % Survival Yes/No* % Survival Yes/No* % Survival Yes/No* % Survival Yes/No % Survival Yes/No	µg/kg Primary µg/L Primary µg/L Primary µg/kg Primary µg/kg Primary µg/L Primary µg/L Primary µg/L Primary µg/L Primary % Survival Mysidopsis % Survival Menidia Yes/No* Leptocheirus % Survival Neanthes Yes/No* Ceriodaphnia % Survival Pimephales Yes/No* Pimephales % Survival Hyallela Yes/No Chironomus Yes/No Chironomus yes/No Counts	Pg/LPrimaryEPA 8260Bµg/LPrimaryEPA 8260Bµg/LPrimaryEPA 8260Bµg/kgPrimaryEPA 8260Bµg/kgPrimaryEPA 8260Bµg/kgPrimaryEPA 8260Bµg/kgPrimaryEPA 8260Bµg/kgPrimaryEPA 8260Bµg/kgPrimaryEPA 8260Bµg/kgPrimaryEPA 8260Bµg/kgPrimaryEPA 8260Bµg/kgPrimaryEPA 8260Bµg/kgPrimaryEV-024/025% Survival Yes/No*Menidia BerrylinaEPA 600-4-91- 003; 1007.0% Survival Yes/No*Leptocheirus NeanthesEPA 600-R-94- 025; 100.4% Survival Yes/No*Neanthes aubiaEPA 600-4-91- 002; 1002.0% Survival Yes/No*Pimephales promelasEPA 600-4-91- 002; 1000.0% Survival Yes/NoHyallela aztecaEPA 600-R-94- 024; 100.1% Survival Yes/NoChironomus tentansEPA 600-R-94- 024; 100.2% Survival Yes/NoChironomus tentansEPA 600-R-94- 024; 100.2	μg/kgPrimaryEPA 8260BGC/MSμg/LPrimaryEPA 8260BGC/MSμg/LPrimaryEPA 8260BGC/MSμg/kgPrimaryEPA 8260BGC/MSμg/kgPrimaryEPA 8260BGC/MSμg/kgPrimaryEPA 8260BGC/MSμg/kgPrimaryEPA 8260BGC/MSμg/kgPrimaryEPA 8260BGC/MSμg/kPrimaryEPA 600-4-91- 003; 1007.0Chronic Toxicity Screening Test% Survival Yes/No*Menidia BerrylinaEPA 600-4-91- 	Pg/LPrimaryEPA 8260BGC/MS34495µg/LPrimaryEPA 8260BGC/MS85795µg/LPrimaryEPA 8260BGC/MS77135µg/kgPrimaryEPA 8260BGC/MS78402µg/kgPrimaryEPA 8260BGC/MS78402µg/kgPrimaryEPA 8260BGC/MS78402µg/kgPrimaryEV-024/02530340% SurvivalMysidopsisEPA 600-4-91- 003; 1007.0Chronic Toxicity Screening Test89805% Survival Yes/No*Menidia BerrylinaEPA 600-4-91- 003; 1006.0Chronic Toxicity Screening Test89806% Survival Yes/No*Leptocheirus dubiaEPA 600-R-94- 004Whole Sediment Toxicity Test89816% Survival Yes/No*Neanthes dubiaEPA 823-B-98- 004Whole Sediment Toxicity Test89802% Survival Yes/No*Ceriodaphnia dubiaEPA 600-4-91- 002; 1002.07-day subchronic test for survival, reproduction89803% Survival Yes/No*Pimephales actecaEPA 600-4-91- 002; 1000.07-day test for survival, growth test89803% Survival Yes/NoChironomus tentansEPA 600-R-94- 024; 100.110-day survival, growth test89813% Survival Yes/NoChironomus tentansEPA 600-R-94- 024; 100.210-day survival test for sediments89814% Survival Yes/NoChironomus tentansEPA 600-R-94- 024; 100.210-	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	jugkg Primary EPA 8260B GC/MS 34495 10 40 15.325 15.325 jug/L Primary EPA 8260B GC/MS 85795 1 20 75-125 75-125 jug/L Primary EPA 8260B GC/MS 45716 10 30 70-130 70-130 jug/kg Primary EPA 8260B GC/MS 78402 10 30 70-130 70-130 jug/kg Primary EPA 8260B GC/MS 78402 10 30 70-130 70-130 jug/kg Primary EPA 600-4-91- 03340 0.010 25 0 % Survival Yes/No* Menidia Berryina EPA 600-4-91- Chronic Toxicity Screening 89805 NA NA NA NA % Survival Yes/No* Neanthes EPA 600-R-94- Whole Scdiment Toxicity Test 89815 NA NA NA NA % Survival Yes/No* Neanthes EPA 600-R-94- Whole Scdiment Toxicity Test 89810 NA

* 1 = toxic; 2 = sublethal; 3 = none

** Individual species will be reported by TNRCC species code (TNRCC 1999)

APPENDIX F TECHNICAL MEMORANDUM

TECHNICAL MEMORANDUM 1 February 13, 2002

Suggested Criteria For Assessing Ambient Sediment And Water Toxicity Testing Results

INTRODUCTION

This technical memorandum recommends criteria for assessing ambient sediment and water chronic toxicity testing results. It is recommended that the lethal and sublethal end-point criteria described in this memorandum be used to identify waterbodies with varying degrees of impairment of aquatic life uses. Ambient toxicity tests exceeding the recommended criteria indicate the waterbody needs additional assessment and/or should be listed on the 303(d) and 305(b) List.

The following criteria recommendations and supporting information are divided into criteria for assessing sediment and ambient water toxicity data.

SEDIMENT RECOMMENDATIONS

Sediment Criteria 1 – Use an alpha = 0.05 when the number of replicates is less than 20. Use an alpha = 0.01 when the number of replicates is 20 or more.

To maintain a high power, 20 or more replicates should be used before using an alpha = 0.01. Otherwise, use an alpha = 0.05.

Sediment Criteria 2 – The whole-sediment toxicity test is recommended for use with ambient sediment samples. Use elutriate tests only on dredge material or when testing the effects of an activity that will cause excessive resuspension of the instream sediment.

Whole sediment toxicity testing is the preferred method because of its consistency and better approximation of actual instream conditions than elutriate testing. For gathering sediment data for aquatic life use attainment determinations, comparing whole sediment test to whole sediment test are preferred. Comparing a combination of whole sediment tests to elutriate tests is like comparing apples to oranges. Both tests are good for their intended purpose; however, for consistency, whole sediment tests are recommended rather than instream sediment testing. Use elutriate tests only on dredge material or when testing the effects of an activity that will cause excessive resuspension of the sediment.

Sediment Criteria 3 – In general, sublethal effects testing is not appropriate to shortduration sediment toxicity tests. Sublethal effects sediment toxicity test methods have not been fully developed. Long-term sublethal effects testing is new and more data are needed to assess this method. Therefore, sublethal effects testing will not be used to assess attainment of aquatic life uses at this time. More data are needed before sublethal whole sediment toxicity tests can be considered appropriate for assessing aquatic life use attainment for instream sediment. According to EPA's freshwater sediment toxicity testing manual, "Additional studies are ongoing to more thoroughly evaluate the relative sensitivity between lethal and sublethal endpoints measured in 10-d tests and between sublethal endpoints measured in the long-term tests (28-d). Results of these studies and additional applications of the methods described in Section 14 and 15 will provide data that can be used to assist in determining where application of long-term tests will be most appropriate."(1)

Sediment Criteria 4 - Mortality in the sample must also be less than the minimum control mortality allowed according to the EPA method.

For ambient sediment toxicity testing, if the conditions of test acceptability are met and survival of the test organism is equal to or greater than 80 percent of the original number of test organisms, the test shall be considered to not have demonstrated significant lethality.

The first WET test "Statistical Interpretation" provision in recent TPDES permits states, "If the conditions of test acceptability are met and the survival of the test organism is equal to or greater than 80% in the critical dilution and all dilutions below that, the test shall be considered to not have demonstrated significant lethality." It is recommended that similar criteria be applied to sediment toxicity testing.

Sediment Criteria 5 – The minimum significant difference (MSD) or the minimum detectable difference (MDD) should not less than 20 percent.

In general, protocols applicable to sediment toxicity are not as well established as those for water methods. However, a 1992 EPA Region 6/ Galveston Corps of Engineers Regional Implementation Agreement for the Ocean Disposal of Dredged Material Off the Texas Coast states:

"Dredged material does not meet the LPC for benthic toxicity when bioassay organism mortality (1) is statistically greater than in the reference sediment, and (2) exceeds mortality in the reference sediment by at least 10% or exceeds the reference mortality by 20% when amphipods are used."

These approaches document ample justification for the selection of a minimum significant difference in survival of the test organism relative to the control.

A.1 WATER RECOMMENDATIONS

The following criteria are recommended:

Water Criteria 1 - Use the Fisher's Exact statistical test and the t-Test for ambient water toxicity testing for survival and sublethal effects, respectively.

Use of the Fisher's Exact statistical test and the t-Test for ambient water toxicity testing for survival and sublethal effects, respectively, is recommended. The EPA Region 6

Laboratory uses the Fisher's Exact and t-Test for determining the MSD for chronic survival and sublethal effects in ambient water toxicity testing. Although EPA's chronic whole effluent toxicity (WET) test manual allows for different statistical tests and reasonable arguments can be made for using different tests, the same statistical tests should be used to allow for a more direct comparison of results from one lab to another.

Water Criteria 2 - For ambient water survival and sublethal toxicity testing, if the conditions of test acceptability are met and survival of the test organism is equal to or greater than 80 percent of the number of test organisms at the beginning of the test, the test should be considered to not have demonstrated significant lethality.

For ambient water toxicity testing, if the conditions of test acceptability are met and survival of the test organism is equal to or greater than 80 percent of the original number of test organisms, it is recommended that the test be considered to not have demonstrated significant lethality.

The first WET test "Statistical Interpretation" provision in recent TPDES permits states, "If the conditions of test acceptability are met and the survival of the test organism is equal to or greater than 80% in the critical dilution and all dilutions below that, the test shall be considered to not have demonstrated significant lethality." It is recommended that similar criteria be applied to ambient water toxicity testing.

Water Criteria 3 - Use an alpha = 0.05 for determining the minimum significant difference in lethal toxicity testing and an alpha = 0.01 in sublethal toxicity testing. Sublethal toxicity test failure rates of less than 30 percent, by themselves, provide inconclusive data. The waterbody should continue to be judged as fully supporting aquatic life uses if previously designated as such. Sublethal toxicity test failure rates greater than 31 percent but less than 50 percent, by themselves, provide inconclusive evidence that the stream is not supporting aquatic life uses. Nevertheless, tests failures in the above range do indicate the stream is partially supporting the use, but additional testing is warranted. Sublethal toxicity test failure rates greater than 50 percent, by themselves, provide evidence that toxicity probably exists and the stream should be designated as not supporting aquatic life uses and that additional testing and potential toxicity are warranted.

The current debate between U.S. Environmental Protection Agency (EPA) and the regulated community over the interlaboratory variability of WET testing and the correlation of WET test failures with instream impairment, has spurred much interest and research. In 1995 EPA amended 40 CFR Part 136 – "Guidelines Establishing Test Procedures for the Analysis of Pollutants" to include WET testing. In 1996 the City of San Bernardino, United Water Florida, and City of Washington, Georgia sued EPA over these methods. Several items identified by the plaintiffs were clarification of the WET method procedures, guidance for use of WET test in permits, and guidance addressing when and under what circumstances a TIE/TRE should be initiated. Lone Star Steel Company also sued EPA in 1996 concerning issues related to WET test failures due to pathogens. In 1997 EPA amended and added new WET method procedures. Shortly after issuing the final WET rule, EPA was sued by the Edison Electric Institute, *et al.*,

and Western Coalition of Arid States(2). These plaintiffs claimed, among other things, that the variability of the WET tests exacerbated results because of unaccounted Type I errors. A Type I error occurs when an effluent is shown to be toxic when it is, in fact, not toxic, or when an ambient toxicity test indicates impairment of aquatic life uses when, in fact, the stream is fully supportive of aquatic life uses. All these suits were settled out of court in 1998 contingent upon separate agreements(2).

EPA's Wet Variability Study

The settlement agreements required EPA to amend most of the WET test methods and issue clarifications and new guidance. Additionally, EPA was required to perform an interlaboratory WET variability study subject to independent peer review. The final Interlaboratory WET Variability Study was published in September 2001(5). Revised WET methods were proposed in October 2001 with the comment period ending January 11, 2002.

Following the 1998 settlements through proposal of the latest revisions of the WET methods, a number of reports and professional articles were published. A study published in 2000 entitled "Investigating the Incidence of Type I Errors for Chronic Whole Effluent Toxicity Testing Using *Ceriodaphnia Dubia*"(3) sought to determine the frequency of Type I errors in *C. dubia* survival and reproductive toxicity tests. Non-toxic synthetic fresh water created using EPA's recommendations(4) was sent by participating wastewater treatment plant operators to 16 laboratories. The laboratories were not aware that the samples were non-toxic. The paper's abstract contained the following conclusion:

"Of the 16 tests completed by the biomonitoring laboratories, two did not meet control performance criteria. Six of the remaining 14 valid tests (43%) indicated toxicity (TUc > 1) in the sample (i.e., no-observed-effect concentration or IC25 < 100% (Interpreted to mean NOEC < 100% and IC25 < 100%)). This incidence of false positives was six times higher than expected when the critical value (alpha) was set to 0.05. No plausible causes for this discrepancy were found. Various alternatives for reducing the rate of Type I errors are recommended, including greater reliance on survival endpoints and use of additional test acceptance criteria."

The survival end-points between the control and the test for the 16 labs were not significantly different. All the false-positives mentioned above were observed in the C. *dubia* reproduction tests.

Results of this study, in part, caused EPA to propose changes(6) to the method of calculating the MSD between the control and the test for both sublethal endpoints for *C*. *dubia* and the fathead minnow toxicity tests. EPA is proposing to allow NPDES permit holders to reduce the nominal (Type I) error rate "alpha" from 0.05 to 0.01 when results of the test are reported as a condition of the permit or when WET permit limits are

derived without allowing for receiving water dilution. EPA set an additional condition, in the revised chronic WET manual, of not exceeding the Maximum-Minimum Significant Difference (Mx-MSD) using an alpha = 0.01. The Mx-MSD for *C. dubia* reproduction and fathead growth tests is 37 percent and 35 percent, respectively. In other words, the maximum MSD for *C. dubia* reproduction test cannot exceed 37 percent of the mean young per female in the control when using an alpha = 0.01. Insufficient replicates can cause the calculated MSD to exceed the Mx-MSD.

EPA made the decision to allow permittees to change the alpha to 0.01, not because the WET test was theoretically flawed, but because, in practice, WET test results were being used to make "yes or no" regulatory decisions. The NPDES permit holders did not want to be falsely accused by EPA of harming the environment. The same can be argued when a stream segment is listed as partially or not supporting aquatic life uses in the 305(b) Report based solely on ambient-water sublethal toxicity testing results. Stream segments listed in the 305(b) report as not supporting aquatic life uses are placed on the state's 303(d) List.

In October 2000, EPA published preliminary results of their Interlaboratory WET Variability Study required in the above mentioned out-of-court settlement. In February 2001, the Western Coalition of Arid States (West-CAS), one of the plaintiffs in the out-of-court settlement, provided EPA its comments to the preliminary variability study(7). One comment provided by West-CAS relative to this memorandum is:

"EPA underestimated the true rate of false positives by misinterpreting results from the reference toxicant tests. The Agency acknowledged that many laboratories failed to observe toxicity in the chronic Ceriodaphnia tests on reference toxicant samples. The agency asserts, incorrectly, that the failure was due to "differences in test sensitivity between laboratories." In fact, 9 of the 11 most sensitive tests (based on percent minimum significant difference) indicated that the reference toxicant sample was not toxic. Converselv, 9 of the 11 least sensitive tests showed the sample was toxic. On average, tests that indicated toxicity(,) were 50% less sensitive than tests that indicated no toxicity. The difference in test sensitivity was statistically-significant (p=.05). If the reference toxicant sample was actually toxic, then the most sensitive tests would be the most likely to confirm the presence of toxicity. Because that did not occur in EPA's study, and because two-thirds of the laboratories (including the referee lab) reported no statistically-significant difference in Ceriodaphnia reproduction, the only logical conclusion is that the sample was not toxic. Therefore, the laboratories observing test failures were, in fact, reporting false positives. Based on data from the nontoxic reference toxicant tests, the true rate of Type-I error exceeds 33% for the chronic Ceriodaphnia reproduction method."

Risk Science and West-CAS provided additional comments after the final version of the variability study was published in September 2001. The following is a comment that expands on the one provided above(8).

"Two-thirds of the laboratories failed to observe a toxic response for the reference toxicant samples during the chronic Ceriodaphnia dubia tests. Given that the most sensitive c. dubia tests indicated no toxicity and the least sensitive c. dubia tests showed toxicity, how should the true nature of the original sample be classified: toxic or non-toxic?"

In March 2001, EPA published peer review comments to the variability study. The following are some of the more interesting comments from the three reviewers, X, Y and Z, on EPA's WET Variability Study, 2001(9).

Peer Reviewer X:

Question: Are the results scientifically acceptable within the context of the intended regulatory use?

Answer: "Yes and No. The data are there, though they need clarifications as noted in this review. However, I am not convinced that the Study Plan allowed for direct comparisons with regulatory use. For example, test concentrations were regimented and had larger than normal gradations, and false positives were not evaluated in terms of ecological significance but rather in terms of testing only. These tests are applied, to often, as decisive when (see Section 5 of this review, below) they are far from such."

Comment: "First, single species toxicity tests (*e.g.*, WET tests) are valuable first tier assessments. Results should then be used as guidance for additional studies such as exposure characterizations to provide insight on causality (*e.g.*, TIEs), or biological assessments to provide data for detecting ecological impairment. As noted by Hall and Gidding (2000) and Chapman (2000), WET tests are the beginning, not the end of evaluations."

Peer Reviewer Z

Question: Are the results scientifically acceptable within the context of the intended regulatory use?

Answer: "YES/NO. The results are scientifically acceptable within any context since the approach was scientifically rigorous. However, there is a distinction between scientifically acceptable in terms of accepting the results versus whether or not the results are acceptable for regulatory use. This is reminiscent of the following story: "*The operation was a success, but the patient died*!" The results should be accepted, but the results seem to show that some of these tests should not be used in the regulatory context because the successful completion rate is too low and the CV values are too high."

Additional comment by West-CAS and the peer review committee and EPA's response to their comments may be viewed at http://www.toxicity.com/

Reducing Type I Errors

Many scientific articles have been published that state or infer that WET or ambient toxicity tests in and by themselves do not necessarily indicate aquatic life uses are impaired (10, 11, 12). For C. dubia reproductive tests, Type I errors appear to occur, in practice, in greater than 5 percent (alpha = 0.05) of the tests. Reasons include sampling and laboratory contamination, improper food preparation or contamination, individually poor performing females, not discarding results following a procedural error, parasites, pH drift, poor training, inexperience, and others (6, 11, 13). Not discarding results following a procedural error is more common than expected (7, 8). As an example, in EPA's final WET variability study, the successful C. dubia reproductive test completion rate for labs that met the Test Acceptance Criteria was 82 percent. Nevertheless, the successful completion rate for labs that met all non-discretionary conditions in 40 CFR Part 136 was 40 percent (7). There is also much debate as to whether WET testing correlates with instream aquatic conditions. In Section 3.5.5 of the Water Environment Research Foundation report(10) it was stated that "Ceriodaphnia chronic reproduction NOEC showed no relationship with instream biological conditions." This report and specifically this statement focused on comparing results of WET testing of permitted point-source discharges to instream biological (benthic macroinvertebrate) assessments. Although this report compares WET test results from discharged effluent and not ambient water, the above quote was based, in part, on results from effluent dominated streams.

The following quote summarizes the views of many scientist and toxicologist.

"Rather than relying on a discrete, yes/no decision based on hypothesis testing of ambient toxicity tests at (alpha) levels of 0.1, 0.05 or 0.01, statistical interpretation of toxicity data and scientific judgement should be incorporated into the decision making process of determining when a stream segment or waterbody is impaired and considered for TMDL development."(14)Nevertheless, yes or no regulatory decisions are made on scientific evidence that may not support the regulatory action taken.

CONCLUSION

The recommended Sediment Criteria mirror previously established criteria established by the U.S. Corps of Engineers or are similar to the recommended water criteria. Water Criteria 1 and 2 are minor modifications to existing TNRCC policy. The reasons for these recommendations are noted above. Water Criteria 3 is more likely to be controversial. Unfortunately, there must be a line drawn where yes or no regulatory decisions concerning toxicity testing and attainment of aquatic life uses are made. Water Criteria 3 through 6 provide this line.

BIBLIOGRAPHY

- (1) EPA 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sedimentassociated Contaminants with Freshwater Invertebrates. United States Environmental Protection Agency, Second Edition. EPA/600/4-99/064.
- (2) Edison Electric Institute, *et al.* and Western Coalition of Arid States vs. U.S. Environmental Protection Agency Settlement Agreement, July 24, 1998.
- (3) Moore, *et al.* 1999. Investigating the Incidence of Type I Errors for Chronic Whole Effluent Toxicity Testing Using Ceriodaphnia Dubia. *Environmental Toxicology and Chemistry*, Vol. 19, No. 1, pp. 118-122, 2000.
- (4) EPA 1994. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. United States Environmental Protection Agency, Third Edition EPA/600/4-91/002, p.11.
- (5) EPA 2001. Final Report: Interlaboratory Variability Study of EPA Short-term Chronic and Acute Whole Effluent Toxicity Test Methods, Vol. 1. Environmental Protection Agency, EPA 821-B-01-004.
- (6) Federal Register 2001. Part VI Environmental Protection Agency. Guidelines Establishing Test Procedures for the Analysis of Pollutants; Whole Effluent Toxicity Test Methods; Proposed Rule. 40 CFR Part 136.
- (7) EPA. Comments on Interlaboratory Study. <u>www.toxicity.com/epawetvariabilitystudy/westcas_study_comments.pdf</u>
- (8) EPA. Murphy's Law As Applied to the WET Interlaboratory Study. www.toxicity.com/epawetvariability study/westcas_study_comments2.pdf
- (9) EPA 2001. Summary Report. Peer Review of 'Preliminary Report: Interlaboratory Variability Study of EPA Short-term Chronic and Acute Whole Effluent Toxicity Test Methods (WET Study Report).
- (10) Water Environment Research Foundation 1999. Final Report. Evaluating Whole Effluent Toxicity Testing as an Indicator of Instream Biological Conditions. Project 95-HHE-1
- (11) Whole Effluent Toxicity Testing: An Evaluation of Methods and Prediction of Receiving System Impacts. Setac Press, Pensacola, FL.
- (12) La Point, Thomas W. and W.T. Waller 2000. Field Assessments in Conjunction with Whole Effluent Toxicity Testing. *Environmental Toxicology and Chemistry*, Vol. 19, No. 1, pp. 14-24.
- (13) Stewart, Arthur J. and B.K. Konetsky 1998. Longevity and reproduction of *ceriodahnia dubia* in receiving waters. *Environmental Toxicology and Chemistry*, Vol. 17, No. 6, pp. 1165-1171.
- (14) La Point, et al. 2002. Draft Paper (unpublished)

APPENDIX G STREAM HABITAT FORMS

Appendix G Part I - Stream Physical Characteristics Worksheet

Observers:			Date:			Tim	e: 083	30		Weath	er condi	itions: <u>F</u>	artly cl	oudy, 80	<u>)F</u>		
Stream: 2304	Locat	tion of site:	13208	L	ength of	stream re	each:										
Stream Segment No.: 23	04Observ	ed Stream	Uses:		Aes	thetics (c	ircle on	ne): (1) v	vildernes	ss (2) na	atural (3) comm	ion (4) a	offensiv	e		
Stream Type (Circle One):	perennial or	intermitter	nt w/ perennial po	ols Stre	eam Bend	ds: No. W	ell Def	fined 2	<u>;</u> No.	Moder	ately D	efined	<u>0 ;</u> N	lo. Poor	ly Define	:d <u>0</u>	
Channel Obstructions/Mod	lifications:	Weir	No. of	Riffles		C	hannel	Flow St	atus (ciro	cle one)	: high	mod	erate	low n	o flow		
Left Ba Right I	ank: Trees Bank: Trees	<u>70</u> Shr <u>70</u> Shru	ubs <u>20</u> Gra .lbs <u>20</u> Gra	isses, F isses, F	orbs <u>10</u> orbs <u>1(</u>	Cult) Cul	. Fields t. Field	s	_ Other _ Othe	r							
Location of Transect	Stream Width (m)	Left Bank Slope (°)	Left Bank Erosion Potential (%)		10m Thalwe	20m g Depth:	Strear 35m	n Depths 45m	(m) at Po 55m	oints Acr 70m			110m	120m	Right Bank Slope (°)	Right Bank Erosion Potential (%)	Tree Canopy (%)
	100	30	20												30	20	0
	Habitat Typ One) <u>Riffle</u>		Dominar	nt Subst	rate Type		Dominant Types Riparian Vegetation: Left Bank: Mesquite trees									% Gravel or Larger	
	Poc			rocky			Right Bank: Cat claws, giant cane 80										
	Algae or Mae (Circle One) Abundant Co Rare Absent	1 5	Width of Natural Vegetation (m) LB: on going RB				Instream Cover Types: % Instream Cover Some cane in stream 2										
				r													1
Location of Transect	Stream Width (m)	Left Bank Slope (°)	Left Bank Erosion Potential (%)		Thalwe	g Depth:	Stream	m Depths	s (m) at Po	oints Act	ross Trar	isect			Right Bank Slope (°)	Right Bank Erosion Potential (%)	Tree Canopy (%)
	Habitat Typ One) Riffle Poo	Run Glide	Dominar	nt Subst	rate Type		Left B Right		Dom	inant Tyj	pes Ripa	rian Veg	etation:			% Gravel or Larg	er
	Algae or Mac (Circle One) Abundant Co Rare Absent	ommon	Width of Natural Vegetation (m) LB: RB:	Buffer			In	istream C	over Typ	es:						% Instream Cover	r

Appendix G

Part I - Stream Physical Characteristics Worksheet

Observers: C. Ryon, C.	Webster		Date:04-2	5-01	Tim	e: <u>11:</u>	26		Weathe	er condi	tions:						
Stream: Rio Grande	I	Location of	f site: <u>#13560 @</u>	Moody Ranch		Le	ength of	stream	each:								
Stream Segment No.: 23	<u>804</u> Observe	ed Stream V	Uses: Livestock v	watering Aest	hetics (ci	rcle one	e): <u>(1) wi</u>	ilderne	<u>ss</u> (2) na	utural (3) comm	on (4) o	offensiv	e			
Stream Type (Circle One):	perennial or	intermitter	nt w/ perennial po	ols Stream Bend	ls: No. V	/ell Def	fined 2	; No	. Moder	ately D	efined	<u>0;</u> 1	No. Pooi	ly Define	ed <u>0</u>		
Channel Obstructions/Mod	lifications:	Gravel I	sland (1 year old)	N	o. of Rif	fles:	nume	erous	(Channel	Flow S	tatus (c	ircle on	e): high	<u>moderate</u> low	no flow	
Riparian Vegetation (%): Left B Right I	ank: Trees Bank: Trees	Shrub 20Shru	s <u> </u>	99% Cor Forbs <u>1% Berm</u> sses, Forbs <u>40</u>	nuda (Cult. Fie . Fields <u>-</u>	elds	O Other									
Location of Transect	Stream Width (m)	Left Bank Slope (°)	Left Bank Erosion Potential (%)	10m Thalwe	20m g Depth:	Stream 35m	n Depths 45m	(m) at P 55m	oints Acı 70m		sect	110m	120m	Right Bank Slope (°)	Right Bank Erosion Potential (%)	Tree Canopy (%)	
#13560	120	30	0-1	0 1	0	0	0.5	0.5	0.8	0.8	1.0	0.5	0	35	0-5	0	
Moody Ranch	Moody Ranch Habitat Type (Circle One) Riffle <u>Run</u> Glide				ant Substrate Type Dominar Left Bank:				inant Tyj	pes Ripa	rian Veg	etation:	% Gravel or Larger				
Sampled upstream of island	Poo			Gravel			Bank: Co	orrizo, N	lesquite						100		
Algae or Macrophytes Width of Natural Buffer Instream C							stream Co	over Typ	es:				% Instream Cover				
	(Circle One) <u>Abundant</u> Co Rare Absent	ommon	Vegetation (m) LB:>100m RB	3 : >100m		Corrizo								0-1			
	1													11	11	1	
Location of Transect	Stream Width (m)	Left Bank Slope (°)	Left Bank Erosion Potential (%)	Thalwe	g Depth:	Stream	Stream Depths (m) at Points Across Transect Slope (°)							Bank Slope	Right Bank Erosion Potential (%)	Tree Canopy (%)	
	Habitat Typ One) Riffle F Poo	Run Glide	Dominant Substrate Type Dominant Types Riparian Vegetation: Left Bank: Right Bank:								% Gravel or Larger						
	Algae or Mac (Circle One) Abundant Co Rare Absent	1 2	Width of Natural Vegetation (m) LB: RB:	Buffer		In	stream Co	over Typ	oes:						% Instream Cover		

Appendix G Part I - Stream Physical Characteristics Worksheet

Observers: C. Ryon, C. Y	Webster		Date:04-	25-01		Tir	ne:	1450	Weat	her con	ditions:	<u>Sunny,</u>	partly o	cloudy			
Stream: Rio Grande	I	Location of	f site: Site 13205	;	I	Length of	fstream	reach:	<u>l mile</u>								
Stream Segment No.: 230	04Observe	ed Stream V	Uses: Contact Red	reation	n <u>, Boating</u>	g, Fishing	2	A	esthetics	(circle	one): (1) wilde	erness <u>(2</u>	2) natur	<u>al</u> (3) cor	nmon (4) offensiv	e
Stream Type (Circle One):	perennial or	intermitter	nt w/ perennial po	ols Stre	eam Bend	ls: No. W	ell Def	ined	<u>4 ;</u> N	o. Mod	erately	Defined	l;	No. Poo	rly Defin	ed	
Channel Obstructions/Mod	lifications:	None	N	lo. of R	Riffles:	3		Channe	l Flow S	tatus (c	ircle or	ie): hi	gh <u>m</u>	oderate	low n	o flow	
Riparian Vegetation (%): Left Ba Right F	ank: Trees <u></u> Bank: Trees	5 <u> </u>	ubs <u>10</u> Gr rubs <u>40</u> Gr	rasses, l rasses, l	Forbs Forbs	<u>85</u> 00	Cult. Fi Cult. Fi	elds elds	0 0	ther ther							
Location of Transect	Stream Width (m)	Left Bank Slope (°)	Left Bank Erosion Potential (%)		Thalwe	g Depth:	Stream Depths (m) at Points Across Transect Bank Bank Erosion Can Slope Potential (%)								Tree Canopy (%)		
	90	45	20												45	20	50
13205	e (Circle	Dominar	nt Subst	ubstrate Type Dominant Types Riparian Vegetation: Left Bank:							% Gravel or Larger						
Sampled downstream of	1					Gravel Bamboo, cane, grasses Right Bank:							95				
central island	central island <u>Algae</u> or Macrophytes Width of Natural Buffer Instream Cover Types:											% Instream Cover					
	(Circle One) Abundant <u>Co</u> Rare Absent	<u>mmon</u>	Vegetation (m) LB: 100m RB: 2	>100m			Green filamentous algae, cane								25		
															1		
Location of Transect	Stream Width (m)	Left Bank Slope (°)	Left Bank Erosion Potential (%)		Thalwe	g Depth:	Slope								Right Bank Erosion Potential (%)	Tree Canopy (%)	
	Habitat Type (Circle One) Riffle Run Glide Pool Dominant Substrate Type Dominant Types Riparian Vegetation: Left Bank: Right Bank: Right Bank:										% Gravel or Larg	er					
	Algae or Mac (Circle One) Abundant Co Rare Absent	1 5	Width of Natural Vegetation (m) LB: RB:	Buffer			In	stream C	over Typ	es:						% Instream Cover	

Appendix G Stream Habitat Summary

	13560	13205	13208
	04/25/01	04/25/01	
	Wilderness	Natural	
	Gravel Island	None	Weir
	Numerous	3	
	Moderate	Moderate	Moderate
%		27	70
		25	20
	100	48	10
(ft)	120	90	100
(m)	1		
	Corrizo		Some cane
0/		U ,	2
/0	• •		Rocky
%			20
	• •		30
-			0
/0	Ū	50	v
Ł	% % (ft)	Gravel Island Numerous Moderate % 100 % 100 % 120 (m) 1 Corrizo % 0-1 Gravel % 0-3 egrees 33	Gravel Island Numerous ModerateNone 3 Moderate%27 25 %%100%48%90(ft)120 1%0-1 Gravel%0-3 20 45